1、动态规划(DP)
动态规划(Dynamic Programming,DP)与分治区别在于划分的子问题是有重叠的,解过程中对于重叠的部分只要求解一次,记录下结果,其他子问题直接使用即可,减少了重复计算过程。
另外,DP在求解一个问题最优解的时候,不是固定的计算合并某些子问题的解,而是根据各子问题的解的情况选择其中最优的。
动态规划求解具有以下的性质:
最优子结构性质、子问题重叠性质
最优子结构性质:最优解包含了其子问题的最优解,不是合并所有子问题的解,而是找最优的一条解线路,选择部分子最优解来达到最终的最优解。
子问题重叠性质:先计算子问题的解,再由子问题的解去构造问题的解(由于子问题存在重叠,把子问题解记录下来为下一步使用,这样就直接可以从备忘录中读取)。其中备忘录中先记录初始状态。
2、求解思路
①、将原问题分解为子问题(子问题和原问题形式相同,且子问题解求出就会被保存);
②、确定状态:01背包中一个状态就是NN个物体中第ii个是否放入体积为VV背包中;
③、确定一些初始状态(边界状态)的值;
④、确定状态转移方程,如何从一个或多个已知状态求出另一个未知状态的值。(递推型)
3、01背包问题求解思路
①、确认子问题和状态
01背包问题需要求解的就是,为了体积V的背包中物体总价值最大化,NN件物品中第ii件应该放入背包中吗?(其中每个物品最多只能放一件)
为此,我们定义一个二维数组,其中每个元素代表一个状态,即前ii个物体中若干个放入体积为VV背包中最大价值。数组为:f[N][V]f[N][V],其中fijfij表示前ii件中若干个物品放入体积为jj的背包中的最大价值。
②、初始状态
初始状态为f[0][0−V]f[0][0−V]和f[0−N][0]f[0−N][0]都为0,前者表示前0个物品(也就是空物品)无论装入多大的包中总价值都为0,后者表示体积为0的背包啥价值的物品都装不进去。
③、转移函数
if (背包体积j小于物品i的体积)
f[i][j] = f[i-1][j] //背包装不下第i个物体,目前只能靠前i-1个物体装包
else
f[i][j] = max(f[i-1][j], f[i-1][j-Vi] + Wi)
最后一句的意思就是根据“为了体积V的背包中物体总价值最大化,NN件物品中第ii件应该放入背包中吗?”转化而来的。ViVi表示第ii件物体的体积,WiWi表示第i
i件物品的价值。这样f[i-1][j]代表的就是不将这件物品放入背包,而f[i-1][j-Vi] + Wi则是代表将第i件放入背包之后的总价值,比较两者的价值,得出最大的价值存入现在的背包之中。
以上解题思路参照:http://blog.csdn.net/FX677588/article/details/68951593
4、程序
import java.util.*;
/*
* 6个背包,共放入12重量的物品
*/
public class test {
static int[][] m = new int[15][15];
public static void main(String[] args) {
int[] val = { 0, 8, 10, 6, 3, 7, 2 };// 每个物品具有的价值
int[] wgt = { 0, 4, 6, 2, 2, 5, 1 }; // 每个物品的重量
int n = 6, c = 12;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= c; j++) {
if (j >= wgt[i]) {
m[i][j] = Math.max(m[i - 1][j], m[i - 1][j - wgt[i]] + val[i]);
} else
m[i][j] = m[i - 1][j];
}
}
int max = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= c; j++) {
if (m[i][j] > max) {
max = m[i][j];
}
}
}
System.out.print(max);
}
}