Doing Homework again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8730    Accepted Submission(s): 5157

Problem Description
Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test. And now we assume that doing everyone homework always takes one day. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.

Input
The input contains several test cases. The first line of the input is a single integer T that is the number of test cases. T test cases follow.
Each test case start with a positive integer N(1<=N<=1000) which indicate the number of homework.. Then 2 lines follow. The first line contains N integers that indicate the deadlines of the subjects, and the next line contains N integers that indicate the reduced scores.

Output
For each test case, you should output the smallest total reduced score, one line per test case.

Sample Input

3
3
3 3 3
10 5 1
3
1 3 1
6 2 3
7
1 4 6 4 2 4 3
3 2 1 7 6 5 4


Sample Output

0
3
5


#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct stu
{
int d;
int s;
}a[1010];

int cmp(stu a,stu b)
{
return a.s>b.s;
}

int main()
{
int t,n,i,j,mark[1010],count,sign;
scanf("%d",&t);
while(t--)
{
memset(mark,0,sizeof(mark));
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&a[i].d);
for(i=0;i<n;i++)
scanf("%d",&a[i].s);
sort(a,a+n,cmp);
count=0;
for(i=0;i<n;i++)
{
sign=0;
for(j=a[i].d;j>0;j--)
{
if(mark[j]==0)
{
mark[j]=1;//标记完成的学科，和用掉的整天
sign=1;
break;
}
}
if(!sign)
count+=a[i].s;
}
printf("%d\n",count);
}
return 0;
}

• 点赞
• 评论 1
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 手机看

分享到微信朋友圈

x

扫一扫，手机阅读

• 打赏

打赏

纯真zwj

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文
09-07 1420

12-06 2498
07-20 2万+
11-28 1117
11-20 765
03-08
06-08 5万+
12-14 2万+