第十二周 项目4 -利用遍历思想求解图问题

问题描述及代码:

/* 
Copyright (c)2015,烟台大学计算机与控制工程学院 
All rights reserved. 
文件名称:利用遍历思想求解图问题.cpp 
作    者:张雯婧
完成日期:2016年11月12日 
版 本 号:v1.0  
问题描述: 假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。  
       (1)设计一个算法,判断顶点u到v是否有简单路径  
       (2)设计一个算法输出图G中从顶点u到v的一条简单路径(设计测试图时,保证图G中从顶点u到v至少有一条简单路径)。  
       (3)输出从顶点u到v的所有简单路径。  
       (4)输出图G中从顶点u到v的长度为s的所有简单路径。  
       (5)求图中通过某顶点k的所有简单回路(若存在)   
输入描述:若干测试数据。 
程序输出:相应的数据输出。  
*/

main.cpp

int main()  
{  
    ALGraph *G;  
    int A[5][5]=  
    {  
        {0,0,0,0,0},  
        {0,0,1,0,0},  
        {0,0,0,1,1},  
        {0,0,0,0,0},  
        {1,0,0,1,0},  
    };  //请画出对应的有向图  
    ArrayToList(A[0], 5, G);  
    HasPath(G, 1, 0);  
    HasPath(G, 4, 1);  
    return 0;  
}

源函数

int visited[MAXV];     //定义存放节点的访问标志的全局数组  
void ExistPath(ALGraph *G,int u,int v, bool &has)  
{  
    int w;  
    ArcNode *p;  
    visited[u]=1;  
    if(u==v)  
    {  
        has=true;  
        return;  
    }  
    p=G->adjlist[u].firstarc;  
    while (p!=NULL)  
    {  
        w=p->adjvex;  
        if (visited[w]==0)  
            ExistPath(G,w,v,has);  
        p=p->nextarc;  
    }  
}  


void HasPath(ALGraph *G,int u,int v)  
{  
    int i;  
    bool flag = false;  
    for (i=0; i<G->n; i++)  
        visited[i]=0; //访问标志数组初始化  
    ExistPath(G,u,v,flag);  
    printf(" 从 %d 到 %d ", u, v);  
    if(flag)  
        printf("有简单路径\n");  
    else  
        printf("无简单路径\n");  
}

运行结果:

main.cpp的代码

int main()  
{  


    ALGraph *G;  
    int A[5][5]=  
    {  
        {0,0,0,0,0},  
        {0,0,1,0,0},  
        {0,0,0,1,1},  
        {0,0,0,0,0},  
        {1,0,0,1,0},  
    };  //请画出对应的有向图  
    ArrayToList(A[0], 5, G);  
    APath(G, 1, 0);  
    APath(G, 4, 1);  
    return 0;  
}  

源代码:

int visited[MAXV];     //定义存放节点的访问标志的全局数组  
void FindAPath(ALGraph *G,int u,int v,int path[],int d)  
{  
    //d表示path中的路径长度,初始为-1  
    int w,i;  
    ArcNode *p;  
    visited[u]=1;  
    d++;  
    path[d]=u;  //路径长度d增1,顶点u加入到路径中  
    if (u==v)   //找到一条路径后输出并返回  
    {  
        printf("一条简单路径为:");  
        for (i=0; i<=d; i++)  
            printf("%d ",path[i]);  
        printf("\n");  
        return;         //找到一条路径后返回  
    }  
    p=G->adjlist[u].firstarc;  //p指向顶点u的第一个相邻点  
    while (p!=NULL)  
    {  
        w=p->adjvex;    //相邻点的编号为w  
        if (visited[w]==0)  
            FindAPath(G,w,v,path,d);  
        p=p->nextarc;   //p指向顶点u的下一个相邻点  
    }  
}  


void APath(ALGraph *G,int u,int v)  
{  
    int i;  
    int path[MAXV];  
    for (i=0; i<G->n; i++)  
        visited[i]=0; //访问标志数组初始化  
    FindAPath(G,u,v,path,-1);  //d初值为-1,调用时d++,即变成了0  
}  

运行结果:

(3)main.cpp

int main()  
{  
    ALGraph *G;  
    int A[5][5]=  
    {  
        {0,1,0,1,0},  
        {1,0,1,0,0},  
        {0,1,0,1,1},  
        {1,0,1,0,1},  
        {0,0,1,1,0}  
    };  //请画出对应的有向图  
    ArrayToList(A[0], 5, G);  
    DispPaths(G, 1, 4);  
    return 0;  
}  

源代码:

int visited[MAXV];     //定义存放节点的访问标志的全局数组  
void FindPaths(ALGraph *G,int u,int v,int path[],int d)  
//d是到当前为止已走过的路径长度,调用时初值为-1  
{  
    int w,i;  
    ArcNode *p;  
    visited[u]=1;  
    d++;            //路径长度增1  
    path[d]=u;              //将当前顶点添加到路径中  
    if (u==v && d>1)            //输出一条路径  
    {  
        printf("  ");  
        for (i=0; i<=d; i++)  
            printf("%d ",path[i]);  
        printf("\n");  
    }  
    p=G->adjlist[u].firstarc; //p指向u的第一条边  
    while(p!=NULL)  
    {  
        w=p->adjvex;     //w为u的邻接顶点  
        if (visited[w]==0)      //若顶点未标记访问,则递归访问之  
            FindPaths(G,w,v,path,d);  
        p=p->nextarc; //找u的下一个邻接顶点  
    }  
    visited[u]=0;   //恢复环境  
}  




void DispPaths(ALGraph *G,int u,int v)  
{  
    int i;  
    int path[MAXV];  
    for (i=0; i<G->n; i++)  
        visited[i]=0; //访问标志数组初始化  
    printf("从%d到%d的所有路径:\n",u,v);  
    FindPaths(G,u,v,path,-1);  
    printf("\n");  
}  

运行结果:

(4)main的函数

int main()  
{  
    ALGraph *G;  
    int A[5][5]=  
    {  
        {0,1,0,1,0},  
        {1,0,1,0,0},  
        {0,1,0,1,1},  
        {1,0,1,0,1},  
        {0,0,1,1,0}  
    };  //请画出对应的有向图  
    ArrayToList(A[0], 5, G);  
    DispSomePaths(G, 1, 4, 3);  
    return 0;  
}  

源文件:


int visited[MAXV];       //全局变量  
void DFSPath(ALGraph *G,int u,int v,int path[],int d)  
//d是到当前为止已走过的路径长度,调用时初值为-1  
{  
    int w,i;  
    ArcNode *p;  
    visited[u]=1;  
    d++;  
    path[d]=u;  
    p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边  
    while (p!=NULL)  
    {  
        w=p->adjvex;            //w为顶点u的相邻点  
        if (w==v && d>0)        //找到一个回路,输出之  
        {  
            printf("  ");  
            for (i=0; i<=d; i++)  
                printf("%d ",path[i]);  
            printf("%d \n",v);  
        }  
        if (visited[w]==0)          //w未访问,则递归访问之  
            DFSPath(G,w,v,path,d);  
        p=p->nextarc;       //找u的下一个邻接顶点  
    }  
    visited[u]=0;           //恢复环境:使该顶点可重新使用  
}  


void FindCyclePath(ALGraph *G,int k)  
//输出经过顶点k的所有回路  
{  
    int path[MAXV],i;  
    for (i=0; i<G->n; i++)  
        visited[i]=0; //访问标志数组初始化  
    printf("经过顶点%d的所有回路\n",k);  
    DFSPath(G,k,k,path,-1);  
    printf("\n");  
}

运行结果:

(5)main的函数

int main()  
{  
    ALGraph *G;  
    int A[5][5]=  
    {  
        {0,1,1,0,0},  
        {0,0,1,0,0},  
        {0,0,0,1,1},  
        {0,0,0,0,1},  
        {1,0,0,0,0}  
    };  //请画出对应的有向图  
    ArrayToList(A[0], 5, G);  
    FindCyclePath(G, 0);  
    return 0;  
}  

源文件:

int visited[MAXV];       //全局变量  
void DFSPath(ALGraph *G,int u,int v,int path[],int d)  
//d是到当前为止已走过的路径长度,调用时初值为-1  
{  
    int w,i;  
    ArcNode *p;  
    visited[u]=1;  
    d++;  
    path[d]=u;  
    p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边  
    while (p!=NULL)  
    {  
        w=p->adjvex;            //w为顶点u的相邻点  
        if (w==v && d>0)        //找到一个回路,输出之  
        {  
            printf("  ");  
            for (i=0; i<=d; i++)  
                printf("%d ",path[i]);  
            printf("%d \n",v);  
        }  
        if (visited[w]==0)          //w未访问,则递归访问之  
            DFSPath(G,w,v,path,d);  
        p=p->nextarc;       //找u的下一个邻接顶点  
    }  
    visited[u]=0;           //恢复环境:使该顶点可重新使用  
}  


void FindCyclePath(ALGraph *G,int k)  
//输出经过顶点k的所有回路  
{  
    int path[MAXV],i;  
    for (i=0; i<G->n; i++)  
        visited[i]=0; //访问标志数组初始化  
    printf("经过顶点%d的所有回路\n",k);  
    DFSPath(G,k,k,path,-1);  
    printf("\n");  
}

运行结果:

知识点总结:
   图的遍历。

学习心得

   感觉有点不太懂,模模糊糊,还是需要多练习。



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. 概述: 动态规划(Dynamic Programming,DP)是一种解决多阶段决策问题的优化方法,利用其子问题的最优解来推导出原问题的最优解。其核心思想是将复杂问题分解成子问题,通过保存子问题的解来避免重复计算,从而降低问题的时间复杂度。 2. 应用实例: 动态规划算法在各个领域都有广泛的应用,以下是几个常见的应用问题: - 背包问题:给定一组物品,每个物品有自己的重量和价值,在限定的总重量范围内选择最有价值的物品放入背包中,求最大价值。 - 矩阵链乘法问题:给定一组矩阵,其中每个矩阵的行数等于前一个矩阵的列数,求矩阵乘积的最小代价。 - 最长公共子序列问题:给定两个序列,求它们的最长公共子序列。 - 最长上升子序列问题:给定一个序列,求它的最长上升子序列。 3. 应用举例: 以背包问题为例,说明动态规划算法的求解过程。 问题描述: 假设有一个容量为 W 的背包和 n 个物品,每个物品有自己的重量 wi 和价值 vi,在不超过背包容量的情况下,选择一些物品放入背包中,使得背包中物品的总价值最大。 算法思想: 首先,我们可以将背包问题分解成一个个子问题,每个子问题是选取前 i 个物品放入容量为 j 的背包中所能获得的最大价值。 接着,我们定义一个二维数组 dp[i][j] 表示选取前 i 个物品放入容量为 j 的背包中所能获得的最大价值。其中,dp[i][j] 的计算需要考虑两种情况:不选取第 i 个物品和选取第 i 个物品。 不选取第 i 个物品时,dp[i][j] = dp[i-1][j]。 选取第 i 个物品时,dp[i][j] = dp[i-1][j-wi] + vi。 最后,我们取 dp[n][W] 的值作为所求的最大价值。 算法步骤: - 初始化二维数组 dp[n+1][W+1],所有元素初始化为 0。 - 逐行计算 dp 数组的值,对于每个物品 i,计算 dp[i][j] 值。 - 返回 dp[n][W] 的值。 举例说明求解过程: 假设有如下物品: | 物品 | 重量 | 价值 | | ---- | ---- | ---- | | 1 | 2 | 6 | | 2 | 2 | 3 | | 3 | 3 | 5 | | 4 | 4 | 8 | | 5 | 5 | 10 | 背包容量为 W = 10。 首先,初始化二维数组 dp[n+1][W+1],所有元素初始化为 0。 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | -- | - | - | - | - | - | - | - | - | - | - | -- | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | 2 | 0 | 0 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | 3 | 0 | 0 | 6 | 6 | 9 | 9 | 9 | 11| 11| 11| 11 | | 4 | 0 | 0 | 6 | 6 | 9 | 9 | 9 | 11| 14| 14| 14 | | 5 | 0 | 0 | 6 | 6 | 9 | 10| 10| 12| 14| 16| 16 | 逐行计算 dp 数组的值,对于每个物品 i,计算 dp[i][j] 值。 当 i = 1 时,dp[1][j] 的计算只需要考虑不选取第 1 个物品的情况,即 dp[1][j] = dp[0][j]。 当 i = 2 时,dp[2][j] 的计算需要考虑两种情况,不选取第 2 个物品和选取第 2 个物品。当不选取第 2 个物品时,dp[2][j] = dp[1][j];当选取第 2 个物品时,dp[2][j] = dp[1][j-2] + 3。 当 i = 3 时,dp[3][j] 的计算需要考虑两种情况,不选取第 3 个物品和选取第 3 个物品。当不选取第 3 个物品时,dp[3][j] = dp[2][j];当选取第 3 个物品时,dp[3][j] = dp[2][j-3] + 5。 当 i = 4 时,dp[4][j] 的计算需要考虑两种情况,不选取第 4 个物品和选取第 4 个物品。当不选取第 4 个物品时,dp[4][j] = dp[3][j];当选取第 4 个物品时,dp[4][j] = dp[3][j-4] + 8。 当 i = 5 时,dp[5][j] 的计算需要考虑两种情况,不选取第 5 个物品和选取第 5 个物品。当不选取第 5 个物品时,dp[5][j] = dp[4][j];当选取第 5 个物品时,dp[5][j] = dp[4][j-5] + 10。 最后,取 dp[n][W] 的值作为所求的最大价值,即 dp[5][10] = 16。 性能分析: 动态规划算法的时间复杂度为 O(nW),其中 n 表示物品的个数,W 表示背包的容量。在实际应用中,我们可以通过优化空间复杂度来进一步提升算法的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值