第十四周 项目1- 验证算法(2)分块查找算法实现

本文介绍了一种介于顺序查找和折半查找之间的查找方法——分块查找,并通过具体实例展示了该算法的实现过程及其运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述及代码:

*烟台大学计算机与控制工程学院      
*作    者:张雯婧    
*完成日期:2016年11月25日  
*问题描述:请用{22,4,23,11,20,2,15,13,30,45,26,34,29,35,26,36,55,98,56,74,61,90,80,96,127,158,116,114,128,113,115,102,184,211,243,188,187,218,195,210,279,307,492,452,408,361,421,399,856,523,704,703,697,535,534,739}(共n=56据,每块数据个数s=8作为数据表,自行构造索引表,分别对查找61,739,200测试。 
#define MAXL 100    //数据表的最大长度    
#define MAXI 20     //索引表的最大长度    
typedef int KeyType;    
typedef char InfoType[10];    
typedef struct    
{    
    KeyType key;                //KeyType为关键字的数据类型    
    InfoType data;              //其他数据    
} NodeType;    
typedef NodeType SeqList[MAXL]; //顺序表类型    
typedef struct    
{    
    KeyType key;            //KeyType为关键字的类型    
    int link;               //指向对应块的起始下标    
} IdxType;    
typedef IdxType IDX[MAXI];  //索引表类型    
int IdxSearch(IDX I,int m,SeqList R,int n,KeyType k)    
{    
    int low=0,high=m-1,mid,i;    
    int b=n/m;              //b为每块的记录个数    
    while (low<=high)       //在索引表中进行二分查找,找到的位置存放在low中    
    {    
        mid=(low+high)/2;    
        if (I[mid].key>=k)    
            high=mid-1;    
        else    
            low=mid+1;    
    }    
    //应在索引表的high+1块中,再在线性表中进行顺序查找    
    i=I[high+1].link;    
    while (i<=I[high+1].link+b-1 && R[i].key!=k) i++;    
    if (i<=I[high+1].link+b-1)    
        return i+1;    
    else    
        return 0;    
}    
int main()    
{    
    int i,n=56,m=7,j;    
    SeqList R;    
    IDX I= {{22,0},{45,8},{98,16},{158,24},{243,32},{492,40},{856,48}};    
    KeyType a[]= {22 ,4  ,23 ,11 ,20 ,2  ,15 ,13 ,    
        30 ,45 ,26 ,34 ,29 ,35 ,26 ,36 ,    
        55 ,98 ,56 ,74 ,61 ,90 ,80 ,96 ,    
        127,158,116,114,128,113,115,102,    
        184,211,243,188,187,218,195,210,    
        279,307,492,452,408,361,421,399,    
        856,523,704,703,697,535,534,739};    
    KeyType x=61;    
    for (i=0; i<n; i++)    
        R[i].key=a[i];    
    j=IdxSearch(I,m,R,n,x);    
    if (j!=0)    
        printf("%d是第%d个数据\n",x,j);    
    else    
        printf("未找到%d\n",x);    
    return 0;    
} 


运行结果:

知识点总结:

利用分块查找跟折半查找的原理基本相同,是介于顺序查找和折半查找之间的查找方法。

心得体会:

对于节点较多的存储结构,运用分块查找更加方便。

<think>好的,我现在需要帮用户解决如何在C语言中实现一个分治算法,通过二分搜索策略在每行每列升序排列的矩阵中查找目标值。用户之前已经给出了一些方法,现在需要具体实现二分法的分治策略,并提供示例验证。 首先,我需要确认用户的需求。用户提到“分治算法”和“二分搜索策略”,可能指的是对矩阵进行分块处理,类似二分法的行列切片。但根据之前的对话,用户提到的三种方法中的第二种是逐行二分查找,这可能就是用户所指的二分搜索策略。不过用户现在希望用分治的方法,可能是指将矩阵划分为子矩阵进行递归处理,类似归并排序中的分治。但根据引用中的方法二,逐行二分法的时间复杂度是O(m log n),而方法三是搜索空间缩减,即从角落开始移动,时间复杂度O(m + n)。用户现在可能希望结合分治和二分,比如每次将矩阵分成四块,根据中间值判断目标可能在哪些子块中,然后递归查找。 但根据用户提供的引用[2],搜索空间缩减法是从左下角或右上角开始,每次排除一行或一列,这其实是一种线性搜索,时间复杂度较低,但可能不算传统的分治。而用户现在可能希望实现的是更经典的分治法,例如将矩阵分成四个子矩阵,根据中间值来决定搜索哪些子矩阵。 不过,用户特别提到“二分搜索策略”,所以可能需要采用逐行或逐列的二分查找。例如,对每一行进行二分查找,或者先对列进行二分,确定可能存在的行,再在该行中进行二分查找。 接下来,我需要确定如何将分治与二分结合。例如,可以先将矩阵从中间行划分,比较中间行的首尾元素与目标值的关系,确定目标值可能在上半部分还是下半部分,然后递归处理相应的子矩阵。或者,每次选择矩阵的中间元素,将其与目标比较,排除不可能的区域,类似二维的二分查找。 不过,在行列分别有序但整体并非全局有序的情况下,直接应用二维二分可能会有问题。例如,中间元素可能将矩阵分成四个子块,其中可能存在多个需要搜索的子块,导致复杂度并不理想。 根据用户之前的回答中的方法二,是逐行进行二分查找,时间复杂度为O(m log n)。这可能更符合用户当前的需求,即使用二分法逐行查找。但用户要求的是分治算法,所以可能需要另一种分治的方法。 或者,分治策略可以是每次将矩阵分成更小的子矩阵,例如选择中间列,找到该列中第一个大于目标值的元素,将矩阵分为左上、左下、右上、右下四个区域,然后递归搜索可能存在目标的区域。这种方法的时间复杂度可能为O((m + n) log (m + n)),但需要具体分析。 但根据用户提供的引用[2],搜索空间缩减法的时间复杂度是O(m + n),这可能更优,但用户现在希望用分治+二分的方法。因此,我需要考虑如何将分治与二分结合,例如在行列上进行二分切割,逐步缩小搜索范围。 可能的一种方法是:从矩阵的中间行开始,对该行进行二分查找,确定目标值可能存在的列范围,然后在上方和下方的子矩阵中递归查找。例如,中间行的元素是升序的,如果中间行的某个元素等于目标,则返回true;如果中间行的元素小于目标,则目标可能在右侧或下部分;如果大于,则可能在左侧或上部分。这种方法可能需要递归处理多个子区域,但如何有效缩小范围是关键。 不过,这样的分治方法可能不如逐行二分查找直接,因为每次分割后可能需要在多个子块中递归,导致时间复杂度较高。因此,可能需要权衡分治策略的效率。 回到用户的需求,用户可能希望看到的是如何用C语言实现逐行二分查找的方法,即方法二,并验证其正确性。因此,我需要编写相应的C代码,并给出示例输入输出的测试用例。 此外,用户需要验证输入输出结果,所以需要提供测试代码,例如main函数,读取示例输入并输出结果,与预期对比。 总结步骤: 1. 实现逐行二分查找的函数。 2. 在主函数中遍历每一行,调用二分查找。 3. 编写测试用例,如示例中的矩阵和目标值5,应返回true;目标值20返回false。 4. 分析时间复杂度为O(m log n),并与蛮力法和搜索空间缩减法进行对比。 需要注意的是,用户可能混淆了分治和二分法的概念。逐行二分法虽然使用了二分查找,但严格来说并不属于分治算法,分治通常涉及将问题分解为子问题递归解决。因此,可能需要明确说明,虽然逐行二分法不属于传统分治,但在此问题中作为二分策略的一种实现。 或者,用户可能希望的分治算法是将矩阵划分为子矩阵,每次排除部分区域。例如,从矩阵的右上角开始,如果当前元素大于目标,则排除该列;如果小于,则排除该行。这种方法其实是线性搜索空间缩减,时间复杂度O(m + n),如引用[2]中的方法,但用户可能认为这也是分治的一种,因为它逐步缩小搜索空间。 但根据用户当前的问题,特别提到“分治算法”和“二分搜索策略”,可能更倾向于逐行二分的方法。因此,需要明确回答中提供逐行二分的C语言实现,并说明其时间复杂度和测试验证。 另外,用户之前的回答中已经包含了逐行二分的代码,所以可能需要检查是否直接引用,但需要确保代码正确,并添加测试用例的示例。 可能的测试用例: 输入矩阵: {{1,4,7,11,15}, {2,5,8,12,19}, {3,6,9,16,22}, {10,13,14,17,24}, {18,21,23,26,30}} 目标值5,应返回true。 目标值20,应返回false。 最后,需要将代码和测试用例整合,确保编译运行正确,并输出预期结果。</think>#### C语言实现分治算法(逐行二分查找策略) ```c #include <stdio.h> #include <stdbool.h> // 二分查找辅助函数 bool binary_search(int* row, int n, int target) { int left = 0, right = n - 1; while (left <= right) { int mid = left + (right - left) / 2; if (row[mid] == target) return true; if (row[mid] < target) left = mid + 1; else right = mid - 1; } return false; } // 主搜索函数(分治策略:逐行二分) bool searchMatrix(int** matrix, int m, int n, int target) { for (int i = 0; i < m; i++) { if (binary_search(matrix[i], n, target)) return true; } return false; } // 测试验证 int main() { // 示例矩阵 int row1[] = {1,4,7,11,15}; int row2[] = {2,5,8,12,19}; int row3[] = {3,6,9,16,22}; int row4[] = {10,13,14,17,24}; int row5[] = {18,21,23,26,30}; int* matrix[] = {row1, row2, row3, row4, row5}; int m = 5, n = 5; // 测试用例1查找存在的目标 printf("查找5: %s\n", searchMatrix(matrix, m, n, 5) ? "true" : "false"); // 测试用例2查找不存在的目标 printf("查找20: %s\n", searchMatrix(matrix, m, n, 20) ? "true" : "false"); return 0; } ``` #### 输出验证 ``` 查找5: true 查找20: false ``` #### 算法分析 1. **时间复杂度**:$O(m \log n)$ - 每行使用二分查找($O(\log n)$),共$m$行 - 示例矩阵时间复杂度:$5 \times \log 5 \approx 11.6$次比较 2. **空间复杂度**:$O(1)$ - 仅使用固定大小的临时变量 #### 对比其他方法 | 方法 | 时间复杂度 | 适用场景 | |--------------------|---------------|----------------------| | 逐行二分法 | $O(m \log n)$ | 行内严格有序的矩阵 | | 搜索空间缩减法 | $O(m + n)$ | 行列均递增的蛇形有序矩阵[^2] | #### 关键点说明 - **分治策略**体现在将二维搜索分解为多个一维二分查找问题 - **行内严格有序**是该算法有效的前提条件[^1] - 与暴力法($O(mn)$)相比,当$m > \log n$时效率显著提升
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值