坑点:
1. 从大到小,第k个数
2.
Note:
You may assume that nums' length ≥ k-1 and k ≥ 1.
纯废话,我提交时第一个test case的构造函数中,nums就是null, 但k是 1!!!第九个test case的构造函数的nums有两个元素,但k是3!!
思路:
维护一个容纳k个元素的小顶堆,这k个元素中的最小值(即小顶堆的堆顶元素),即为输入序列中按照从大到小顺序的第k大的元素,后面每存入一个值时,先判断队列中元素数量,如果比k小,则直接放到队列中;如果已经有k个元素,则比较待输入值与堆顶元素的大小,若该值比堆顶元素小,则该值不可能是第k大元素,若该值比堆顶元素大,则堆中其他元素可能是第k大元素
例如,假设k为3,当前输入序列为:5,-1,2,1,则堆中元素为5,2,1,其中1为堆顶元素(小顶堆),后续输入序列为:-2,3,由于-2比1还小,当前输入序列(5, -1, 2, 1)中第3大元素为1,-2比1还小,不可能是第3大元素,直接忽略;输入3时,由于3比1大,所以当前的的第3大元素,可能要变更,把当前堆顶弹出,把3放入堆中,堆顶是谁,谁就是第3大元素。
C++中可以使用stl中的priority_queue实现的小顶堆,代码如下
class KthLargest {
private:
std::priority_queue<int, vector<int>, greater<int>> m_kthDatas;
int k;
public:
KthLargest(int k, vector<int>& nums) {
int index = 0;
this->k = k;
for (index = 0; index < nums.size(); ++index) {
if (index < k) {
m_kthDatas.push(nums[index]);
} else if (m_kthDatas.top() < nums[index]) {
m_kthDatas.pop();
m_kthDatas.push(nums[index]);
}
}
}
int add(int val) {
if (m_kthDatas.size() < k) {
m_kthDatas.push(val);
} else if (m_kthDatas.top() < val) {
m_kthDatas.pop();
m_kthDatas.push(val);
}
return m_kthDatas.top();
}
};
/**
* Your KthLargest object will be instantiated and called as such:
* KthLargest* obj = new KthLargest(k, nums);
* int param_1 = obj->add(val);
*/
Runtime: 40 ms, faster than 98.47% of C++ online submissions for Kth Largest Element in a Stream.
Memory Usage: 19.4 MB, less than 85.00% of C++ online submissions for Kth Largest Element in a Stream.
关于priority_queue的例子,可以参考这篇文章。