计算机视觉
zwq940103
学习python,AI
展开
-
SIFT算法
1.SIFT概述SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的。SIFT特征对旋转、尺度缩放、亮度变化等保持不变性,是一种非常稳定的局部特征。1.1 SIFT算法具的特点图像的局部特征,对旋转、尺度缩放、亮度变化保持不变,对视角变化、仿射变换、噪声也保持一定程度的稳定性。 独特性好,信息...转载 2019-04-10 12:15:07 · 389 阅读 · 0 评论 -
基于特征的图像对准的过程
基本过程1、特征提取sift2、特征匹配3、迭代选择三个特征点对,得到初始变换T 利用其它特征点对,验证变换T最终结果原创 2019-04-14 21:13:00 · 706 阅读 · 0 评论 -
图像几何变换之仿射变换
1、原理仿射变换(Affine Transformation 或Affine Map)是一种二维坐标(x, y)到二维坐标(u, v)的线性变换,其数学表达式形式如下:对应的齐次坐标矩阵表示形式为:仿射变换保持了二维图形的“平直性”(直线经仿射变换后依然为直线)和“平行性”(直线之间的相对位置关系保持不变,平行线经仿射变换后依然为平行线,且直线上点的位置顺序不会发生变...转载 2019-04-14 20:27:54 · 697 阅读 · 0 评论 -
SUSAN算子
SUSAN算子是一种高效的边缘和角点检测算子,并且具有结构保留的降噪功能(structure preserving noise reduction )。那么SUSAN是什么牛气冲天的神器呢?不仅具有边缘检测、角点检测,还具备结构保留的降噪功能。 1、SUSAN算子原理为了介绍和分析的需要,我们首先来看下面这个图:该图是在一个白色的背景上,有一个深度颜色的区域(da...转载 2019-04-09 21:42:22 · 3669 阅读 · 0 评论 -
Harris角点算子
目录一、基础知识二、Harris角点原理1、算法原理2、数学模型三、Harris角点的性质1、阈值决定检测点数量2、Harris角点检测算子对亮度和对比度的变化不敏感3. Harris角点检测算子具有旋转不变性4. Harris角点检测算子不具有尺度不变性特征点检测广泛应用到目标匹配、目标跟踪、三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常...原创 2019-04-09 20:47:52 · 468 阅读 · 0 评论 -
Forstner算子
Forstner算子计算各像素的Roberts梯度和像素(c,r)为中心的一个窗口的灰度协方差矩阵,在图像中寻找具有尽可能小而接近圆的误差椭圆的点作为特征点。Forstner算子步骤 计算各像素的Roberts梯度 计算ll(如5x5或更大)窗口中灰度的协方差矩阵 计算兴趣值q与w 确定待选点 选取极值点 即在一个适...原创 2019-04-09 19:37:20 · 4057 阅读 · 1 评论 -
Moravec算子
Moravec在1981年提出了Moravec角点检测算子,并将它应用于立体匹配。它是一种基于灰度方差的角点检测方法。该算子计算图像中某个像素点沿着水平、垂直、对角线、反对角线四个方向的灰度方差,其中的最小值选为该像素点的角点响应值CRF(CornerResponseFunction),再通过局部非极大值抑制来检测是否为角点。具体实现步骤如下:---------------------...转载 2019-04-09 17:55:13 · 611 阅读 · 0 评论 -
双边滤波器
双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。双边滤波器之所以能够做到在平滑去噪的同时还能够很好的保存边缘(Edge Preserve),是由于其滤波器的核由两个函数生成:一个函数由像素欧式距离决定滤波器模板的系数 另一个函数由像素的灰度差值决定滤波器的系数其...原创 2019-04-09 16:01:15 · 422 阅读 · 0 评论 -
mean-shift 算法
一、Mean Shift算法概述Mean Shift算法,又称为均值漂移算法,Mean Shift的概念最早是由Fukunage在1975年提出的,在后来由Yizong Cheng对其进行扩充,主要提出了两点的改进:定义了核函数; 增加了权重系数。核函数的定义使得偏移值对偏移向量的贡献随之样本与被偏移点的距离的不同而不同。权重系数使得不同样本的权重不同。Mean Shift算法在聚类...转载 2019-04-12 15:08:16 · 3723 阅读 · 0 评论 -
Hough变换与曲线检测
一、什么是hough变化Hough变换是一种对图像中的特征点集(例如,边缘点集)进行坐标变换以寻求特征点集和变换空间之间存在的的某种内在关系的过程。二、Hough变换的特点它在原始特征点集所表示的给定位置和取向的直线或给定位置、取向和形状的曲线和变换空间中的某个点之间建立起一种对应关系。三、注意Hough变换不是把特征点集所表示的(或者更准确地说,所包含的)给定直线或...原创 2019-04-11 13:44:18 · 8339 阅读 · 4 评论 -
边缘检测二 二阶差分算子[拉普拉斯算子(Laplace)、高斯拉普拉斯算子(LOG)、Canny]
一、概述如果图像灰度变化剧烈,进行一阶微分则会形成一个局部的极值,由数学上的知识,对图像进行二阶微分则会形成一个过零点,并且在零点两边产生一个波峰和波谷,我们要设定一个阈值,检测到这个过零点,如下图所示:带来了两个好处:1. 二阶微分关心的是图像灰度的突变而不强调灰度缓慢变化的区域,对边缘的定位能力更强。2. Laplace算子是各项同性的,即具有旋转不变性(后面会证明),...原创 2019-04-11 12:10:17 · 16268 阅读 · 2 评论 -
边缘检测一 一阶微分算子
目录一、综述二、Roberts算子三、Prewitt算子四、Sobel算子一、综述 一阶微分算子一般借助空域微分算子通过卷集完成,但实际上数字图像中求导是利用差分近似微分来进行的。 梯度对应一阶导数,梯度算子是一阶导数算子。对一个连续函数f(x,y),它在位置(x,y)梯度可表示为一个矢量: 对于数字图像,导数可以用差分来近...转载 2019-04-11 10:25:36 · 4189 阅读 · 0 评论 -
图像对准-Image alignment
#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2019/4/15 14:16# @Author : ZWQ # @File : image alingment.py# @Software: PyCharmimport cv2 as cvimport numpy as np# 1、读取两张图片i...转载 2019-04-15 15:59:38 · 2629 阅读 · 0 评论