2016-8-25 zwqStella
摘要
在查阅了许多关于图像特征提取技术方面文献后,本文主要讨论了家装风格自动分类技术的基本介绍和家装风格自动分类的主要研究方法,家装风格自动分类技术的应用前景,以及简要分析当前的家装风格自动分类技术的优越性和当下研究存在的困难。
关键词
图像特征提取;机器视觉;SIFT算法;SVM技术;颜色;灰度;纹理;边缘。
正文
1.前言
随着信息技术的进步,人类社会生活的自动化程度不断提高,许多之前必须以人力完成的工作开始可以由机器完成。视觉是人体的重要感觉,如何将人类能感受到的视觉信息处理为计算机内的信息,是实现视觉自动处理的关键。家居装修风格的自动分类就是视觉自动处理的一个实例。计算机视觉从其产生就成为二维图像识别和分析的工具,作为人类视觉的模拟,视信息成为它的处理对象。视信息包括诸如形状、位置、颜色、纹理等图像特征,计算机视觉对这些图像特征进行处理的主要任务就是特征提取,所提取的特征点也希望尽可能具有不变性。
2. 家装风格自动分类技术基本介绍
家装风格分类技术属于图像特征提取与分析技术的应用之一,图像特征提取从计算机视觉和图像处理中分离出来,运用计算机来分析和处理图像信息,然后确定图像中的不变特征,进而将提取的特征对实际问题进行处理。图像特征提取是一门交叉性的学科,它既包含在计算机视觉技术中,也包含在图像处理中.通过计算机的分析和处理,来提取图像不变特征,进而解决实际问题。图像特征提取往往涉及数学、物理学、控制理论、计算机科学等多个方面的知识。图像特征提取因机器视觉产生而存在,计算机为识别图像而去提取作为图像构成的相关像素点,并对像素点进行分析以确定其特征归属的过程就是图像特征提取。从变换或映射的角度来看,它是对某一模式的组测量值进行变换,以突出该模式具有代表性特征的一种方法,通过影像分析和变换,将部分区域的满足要求的特征点选取出来作为继续识别的信息输入。后续处理的起点缘于图像特征,对于特征而言,并没有一个万能的定义,它要依据具体问题或具体应用而确定。图像特征作为图像描述中的“有趣”部分,体现着图像本身的最基本属性,它能结合视觉进行量化表示。特征选取时应避免“维数灾难”, 高维特征空间运算所带来的计算量将为后续处理带来不可忽视的障碍。一般来讲,良好的特征应具备可区分性、可靠性、独立性、数量少这四个方面的特点。
3. 家装风格自动分类方法
根据区分家装风格的需要,在实现的过程中主要用到两种方法。
(1)图像特征提取方法
① 颜色或灰度的统计特征提取
颜色(灰度)直方图是实践中最常用的图像统计特征.设S(xi)为图像P的某一特征值为xi的像素的个数,N= ∑iS(xi)为P中总的像素数.对S(xi)作归一化处理,即h(xi)=S(xi)N=S(xi)∑iS(xi),则图像P