自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Stara-AI的博客

聚焦人工智能核心技术,系统解构机器学习与深度学习算法、自然语言处理(NLP)与计算机视觉(CV)技术的核心机制,构建理论-代码-应用全链路技术解析体系。

  • 博客(75)
  • 收藏
  • 关注

原创 基于YOLOv8深度学习架构的智能农业巡检小车系统—面向农作物与杂草实时精准识别的创新实践

本研究设计并实现了一套基于YOLOv8的智能农业巡检小车系统,解决农田中农作物与杂草的精准识别与追踪问题。系统采用改进YOLOv8-RGCSPELAN-ECA-AFPN模型,融合ECA注意力机制与AFPN多尺度特征融合结构,提升复杂环境下的检测精度。硬件以树莓派4B为核心,集成摄像头、传感器与电机模块,具备避障、循迹与自主导航功能。移动端基于Android部署NCNN推理引擎,实现模型高效移植与实时检测。

2025-07-07 18:51:13 1221 1

原创 基于Docker容器化部署Lsky Pro私有图床系统

本文是一份详细的私有化图床搭建指南,核心介绍如何使用 Docker 与 Docker Compose 技术,在 CentOS 或 Ubuntu 服务器上快速部署功能完整的开源图床系统——兰空图床 (Lsky Pro)。内容从项目核心价值、Docker 环境安装,到提供一键启动的容器编排配置,并图文详解安装过程,旨在帮助用户彻底摆脱对外部图床的依赖,构建一个自主可控、支持多存储后端的高效图片管理平台。

2025-12-17 17:47:47 541

原创 开发者必备—Docker核心技能精要与实战指南

本文全面阐述了Docker容器化技术的核心组件与实践方法,涵盖从基础安装配置到高级生产部署的全流程。通过对镜像管理、容器操作、网络配置、数据持久化、Dockerfile编写、多服务编排等关键概念的深入解析,为开发者提供了完整的容器化应用部署指南。特别针对实际应用场景,详细说明了Nginx反向代理配置、Docker Compose多容器编排、以及镜像发布到Docker Hub的标准流程,使读者能够快速掌握企业级容器化应用的构建与运维技能。

2025-12-15 16:41:11 809

原创 LangChain—大语言模型应用开发框架的体系化架构解析

本文系统介绍LangChain框架在大语言模型应用开发中的核心作用。通过模块化架构和标准化接口,LangChain显著降低了构建复杂AI系统的门槛。重点解析了六大核心组件:模型接口、提示模板、向量检索、记忆系统、处理链和智能代理,并结合实际代码展示了检索增强生成(RAG)和智能代理系统的实现方法。文章详述了如何统一调用多源模型、构建知识库问答系统,为开发者提供了从基础调用到企业级应用的全链路实践指南,是掌握现代大模型开发技术的关键参考资料。

2025-12-08 18:35:53 948

原创 基于WSL 2在Windows 11 构建深度学习开发环境 —— 以Ubuntu、Anaconda、PyCharm及GPU支持为核心

本文提供了一套完整的教程,指导如何在 Windows 11 系统上基于 WSL 2 架构,从零开始搭建高效的深度学习开发环境。内容涵盖启用 WSL 与虚拟机平台、安装 Ubuntu 24.04 子系统、配置 CUDA 12.6 与 cuDNN 加速库、搭建 Anaconda 虚拟环境、安装 PyTorch 并实现 GPU 调用,最后通过 PyCharm 实现远程连接与开发调试。本方案有效解决了双系统切换、虚拟机性能损耗和环境配置复杂等痛点,为开发者提供了一条稳定高效的跨平台开发路径。

2025-12-01 14:55:22 852

原创 DeepSeek-OCR私有化部署—从零构建OCR服务环境

本文研究了DeepSeek-OCR多模态大模型的私有化部署方案与技术路径。通过设计完整的本地环境构建和容器化部署流程,实现了该模型在企业级场景的稳定运行。重点分析了transformers推理引擎的架构优势,并针对flash-attn加速、模型缓存等关键技术提供了解决方案。实验表明,系统在文档OCR、图表解析、图像描述等七大功能模块均表现优异。本研究为大规模视觉语言模型的私有化部署提供了工程实践参考,推动了OCR技术从文字识别向智能文档理解的转型发展。

2025-11-14 18:09:05 1104

原创 Ubuntu环境中LLaMA Factory 的部署与配置—构建大语言模型微调平台

本文提供了一份详尽的实践指南,旨在帮助开发者和研究者在 Ubuntu 操作系统上,成功部署和配置 LLaMA Factory 这一强大的开源大语言模型(LLM)微调框架。文章内容涵盖了从基础环境准备(如 Python、CUDA、Git)到解决安装过程中的常见依赖和权限问题,最终实现微调平台的完整搭建。通过本指南,读者将能够获得一个功能齐全的微调平台,支持包括 全参数微调、LoRA、QLoRA 在内的多种高效微调技术,为后续进行特定领域的大模型定制与创新应用奠定坚实的实践基础。

2025-11-11 17:17:51 1070

原创 基于YOLOv8与SCConv的轻量化目标检测模型-协同优化空间与通道特征重构

本文提出一种基于YOLOv8架构的轻量化目标检测模型,通过集成SCConv(空间与通道重构卷积)模块实现特征表达的协同优化。该模型采用空间重构单元(SRU)和通道重构单元(CRU)的双路径设计,SRU通过分组归一化生成空间注意力权重以强化关键区域特征,CRU通过特征分割、压缩和融合策略消除通道间冗余。

2025-10-20 15:43:16 1224

原创 基于 Coze 构建面向历史人物“一生”叙事的 AI 自动生成工作流

本文介绍如何利用 Coze 平台构建一套面向中国古代历史人物“一生”叙事的智能内容生成工作流。该系统可自动完成从“生成视频文案 → 生成图片提示词 → 分镜图像生成 → 视频脚本提示 → 尾帧设计 → 时间线编排 → 音效/背景音乐注入 → 最终剪辑合成”的全流程自动化处理,实现高效率、高质量、可复用的历史人物传记短视频生产。

2025-10-13 10:57:45 2131 1

原创 基于 Coze 搭建“沉浸式”中国古代历史人物故事 AI 自动生成工作流

一键生成沉浸式历史故事工作流,可全自动完成从悬疑风故事创作、分镜脚本拆解、厚涂油画风格图像生成、AI配音合成,到剪映草稿文件输出的全流程,真正实现“输入即成片”,大幅降低历史短视频创作门槛。支持一键导入或手动复制部署,在AIGC的浪潮中乘风破浪,创造无限可能。

2025-10-11 10:22:22 1148

原创 MCP与企业数据深度融合—ERP、CRM及数据仓库的统一接入架构与实践

MCP(Model Context Protocol)作为新一代企业数据集成协议,通过标准化接口打通ERP、CRM、数据仓库等异构系统,实现数据实时同步、细粒度权限控制与智能分析,显著降低60%集成成本、提升98%数据一致性,成为企业智能化转型的核心引擎。

2025-09-18 16:05:45 1220

原创 Blender MCP—基于AI代理的智能三维建模协同框架

BlenderMCP 是一套革命性的 AI 辅助 3D 建模框架,通过 Model Context Protocol(模型上下文协议)将 Blender 与 Claude AI 深度集成。该系统允许 Claude 读取场景数据、执行建模指令、操控材质与灯光,甚至调用外部资源库(如 Poly Haven、Hyper3D),实现“对话即建模”的自然交互体验。用户仅需用自然语言下达指令(如“创建地下城中的龙与金锅”),AI 即可自动生成并执行相应 Python 脚本,驱动 Blender 完成复杂场景构建。

2025-09-15 11:38:47 1866

原创 基于MCP架构的OpenWeather API服务端设计与实现

本文基于 MCP 架构,构建了一个可插拔的天气查询服务,集成 OpenWeather API 并通过 stdio 与客户端通信。结合 Cherry Studio,实现了 AI 对天气查询、文件操作等工具的动态调用,展示了 MCP 与 Function Calling 在 AI Agent 中的协同能力。最后,将 Python 服务打包发布至 npm registry,验证了跨语言工具分发的可行性,为开放的 AI 工具生态提供了实践路径。

2025-09-01 16:17:13 1226

原创 基于Ultralytics YOLO通用目标检测与PyTorch EfficientNet的(迁移学习)图像分类实现

本实践对比并实现了两种主流视觉模型开发范式:YOLO项目通过自动化数据划分、标准化配置与完整训练调优,构建了一个可复现、可扩展的目标检测工程框架;而EfficientNet项目则通过迁移学习,冻结主干、微调分类头,并严格对齐预训练数据的处理流程,在极短时间内实现了高精度图像分类。两者共同凸显了工程化设计与知识迁移在现代深度学习中的核心价值。

2025-08-30 15:21:19 896

原创 基于MCP工具的开发-部署-上线与维护全流程技术实现与应用研究

本文围绕 MCP(Model Context Protocol)工具展开,系统介绍了其在开发、部署、上线与维护全流程中的技术实现路径。重点分析了MCP服务器与客户端的快速搭建方法、协议通信机制及典型工具接入案例,并结合虚拟环境与依赖管理方案提升工程化效率。研究表明,MCP作为统一的模型上下文协议,不仅简化了大模型与外部工具的交互流程,也为智能体与多场景应用提供了标准化支撑,具有广阔的发展与应用前景。

2025-08-29 18:03:45 1107

原创 MCP 协议原理与系统架构详解—从 Server 配置到 Client 应用

MCP(模型上下文协议)是一种连接AI助手与数据系统的开放标准,旨在帮助大模型生成更高质量的响应。它的核心组件包括主机、客户端和服务器,能够解决传统集成方式中的接口碎片化和开发成本高等问题。MCP使大型语言模型(LLMs)能够与外部工具和数据源交互,从而提升工作效率。

2025-08-25 18:32:27 1630

原创 深度学习中主流激活函数的数学原理与PyTorch实现综述

激活函数的核心作用是引入非线性,提升网络表达能力。不同函数在梯度特性、输出范围、光滑性等方面各有优劣。ReLU类函数因计算简单、缓解梯度消失被广泛使用;Mish、Swish、GELU等光滑非单调函数在性能上表现更优;SELU支持自归一化;Softmax用于多分类输出。选择合适的激活函数需结合网络结构、任务类型与训练稳定性,是提升模型性能的关键因素。

2025-08-23 18:05:12 1165

原创 基于YOLOv8-SEAttention与LLMs融合的农作物害虫智能诊断与防控决策系统

农业领域的快速发展,视觉检测与语言决策的融合成为智慧农业的重要方向。本文提出一种基于 YOLOv8-SEAttention 与多模态大模型协同的病虫害智能检测与防控决策系统。通过引入 SE 注意力机制增强特征表达,提升小目标识别能力;结合多源 LLM 与提示词工程,实现检测结果到结构化防治建议的自动生成与比对。系统支持多模型协同与多环境部署,具备良好的实用性与推广前景,为农业AI从“识别”到“决策”的闭环提供了有效解决方案。

2025-08-21 18:16:18 1469

原创 基于Supervision工具库与YOLOv8模型的高效计算机视觉任务处理与实践

SuperVision 是一款专为计算机视觉设计的开源工具库,支持 Python 3.9+,可通过 pip、conda 或源码快速安装。它具备模型无关性,兼容 YOLO、Transformers、MMDetection 等主流框架,可灵活集成各类检测与分割模型。核心功能包括数据集加载、结果可视化、目标追踪、区域统计、越线检测和切片推理,广泛应用于视频分析、安防监控等场景。内置注释引擎支持在图像和视频上绘制边界框、掩码、标签和轨迹,提升结果可读性。助力开发者快速构建端到端视觉系统。

2025-08-13 19:18:10 968

原创 基于Coze平台的自动化情报采集与处理引擎—实现小红书图文到飞书的端到端同步

本文介绍了一个基于Coze平台的智能工作流设计与实现,旨在解决内容运营中信息采集、处理与归档的自动化难题。该系统通过集成小红书内容提取、OCR文字识别及飞书多维表格同步三大核心功能,构建了一套完整的“信息获取-智能解析-结构化存储”闭环。项目不仅实现了技术上的创新,更在实际应用中显著提升了工作效率,为内容创作者和运营团队提供了强大的数据支持。

2025-07-29 20:42:09 1318

原创 基于MCP架构的LLM-Agent融合—构建AI Agent的技术体系与落地实践

本文提出以模型上下文协议(MCP)为核心,构建AI Agent的“神经中枢”,解决大模型调用外部工具的标准与效率瓶颈。通过系统实践OpenAI Agents SDK、LangGraph、LlamaIndex等八大主流Agent框架,验证了MCP在多架构下的通用性。结合工业质检与教育辅助双场景案例,展示了MCP如何实现算法模型与业务系统的高效集成。

2025-07-23 20:06:31 1296

原创 基于NCNN框架在Android平台实现YOLOv8目标检测模型的高效部署与实践

本文介绍了如何在Android平台使用NCNN框架部署YOLOv8目标检测模型。首先配置PyTorch与YOLOv8环境,训练并导出ONNX模型,再通过ConvertModel网站将其转换为NCNN格式的`param`和`bin`文件。在Android端,使用Android Studio搭建项目,集成OpenCV-Mobile与NCNN库,并修改JNI层代码以适配自定义模型。最终通过USB调试将应用部署至安卓设备,实现实时目标检测。整个流程适用于快速落地移动端轻量化检测任务。

2025-07-09 18:45:39 1288

原创 基于多模态提示融合的交互式图像标注系统设计与实现

图像标注是构建高质量训练数据集的关键步骤,在目标检测、图像分割、姿态估计、OCR 等任务中具有决定性作用。然而,传统标注工具存在功能单一、自动化程度低、不支持复杂任务等问题,限制了其在实际应用中的效能。为此,X-AnyLabeling 应运而生,结合最新研究成果与工程实践经验,打造了一个具备高度灵活性与智能化的标注平台。

2025-05-26 22:37:57 2106

原创 面向AI研究的模块化即插即用架构综述与资源整理全覆盖

在当前深度学习研究日益激烈的背景下,如何高效提升论文创新性与实验迭代效率已成为科研人员关注的核心问题。近年来,“即插即用模块”因其“无缝集成”、“快速启用”的特性,逐渐成为论文中常见的性能增强组件。此类模块通常具备良好的模块化设计和标准化接口,能够灵活适配多种网络架构与任务类型,显著降低模型改进的技术门槛与开发成本。本文围绕当前主流的即插即用模块进行系统梳理,涵盖2025年最新发表于顶会顶刊中的成果,覆盖计算机视觉(CV)、图像处理及其他AI相关任务。

2025-05-20 16:45:59 1966

原创 多头自注意力机制—Transformer模型的并行特征捕获引擎

多头自注意力机制(Multi-Head Self-Attention)是Transformer模型中的核心组件,通过并行计算多个注意力头,捕捉输入序列中不同位置之间的长程依赖关系与复杂特征交互。它使模型能够在不同表示子空间中同时关注不同类型的语义和结构信息,从而增强模型的表达能力与并行处理效率。

2025-05-18 18:56:18 1255

原创 基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化

本文针对YOLOv11主干网络在复杂场景下局部感受野受限、上下文建模能力不足的问题,提出了一种基于多头自注意力机制(Multi-Head Self-Attention, MHSA)的改进型主干网络结构。该方法通过在骨干网络的关键特征提取层中嵌入MHSA模块,有效引入全局注意力机制,使模型能够动态关注图像中的长距离依赖关系与关键语义区域。相较于传统卷积操作仅依赖局部邻域信息的局限性,MHSA能够在多个特征子空间中并行建模全局交互关系,从而显著增强特征表示的丰富性与判别能力。

2025-05-17 17:22:44 1048

原创 基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式

针对当前主流目标检测模型在边缘设备部署中所面临的计算资源受限和推理效率瓶颈问题,本文提出一种基于 YOLOv11 的改进型轻量化目标检测架构。该模型融合了 多尺度注意力机制(Multi-Scale Attention) 与 反向残差移动块(Inverted Residual Mobile Block, iRMB) ,在保持高精度的同时显著降低模型参数量与计算复杂度。

2025-05-12 15:53:58 1206

原创 基于大核感知与非膨胀卷积的SPPF改进—融合UniRepLK的YOLOv8目标检测创新架构

在当前目标检测领域中,YOLO系列模型因其优异的速度-精度平衡能力而被广泛部署于工业界与科研场景。其核心组件之一——SPPF(Spatial Pyramid Pooling Fast)模块仍采用传统池化操作,导致模型在复杂场景下对小目标和遮挡目标的识别能力受限。为解决这一问题,本文提出将UniRepLKNet中的大kernel感知机制 引入YOLOv8架构中,通过非膨胀卷积与结构重参数化策略 显著提升模型的感受野与上下文建模能力。

2025-05-11 16:09:05 1040

原创 基于BiFormer与DCNv3协同优化的YOLOv8改进—面向小目标检测交通标志检测的轻量化金字塔网络架构

本文提出一种基于BiFormer动态稀疏注意力 与DCNv3可变形卷积 协同优化的轻量化检测框架。通过构建双路径特征增强模块(DP-FAM),将BiFormer的双层路由注意力机制 (BRA)与DCNv3的调制偏移特性 深度融合:BRA模块通过区域级过滤与令牌级交互的分层策略,在O(nlogn)复杂度下实现内容感知的动态稀疏建模;DCNv3则通过可学习的空间偏移补偿注意力稀疏化导致的局部细节丢失,并增强对交通标志尺度变化与遮挡形变的鲁棒性。

2025-05-08 16:36:03 1053

原创 基于SeaFormer的YOLOv8性能提升策略—轻量高效注意力模块Sea_AttentionBlock在语义分割中的应用研究

本文基于轻量级语义分割模型 SeaFormer,提出一种高效的注意力模块Sea_AttentionBlock ,并将其集成到 YOLOv8 中,以提升目标检测性能。该模块结构轻便、计算高效,尤其在小目标检测方面表现突出。通过在多个数据集上的实验验证,结合 Sea_AttentionBlock 的 YOLOv8 模型在保持推理速度的同时,显著提升了检测精度,验证了该模块的有效性与泛化能力。

2025-05-07 16:03:31 1017

原创 基于YOLOv的目标检测训练数据构建方法研究—图像采集、标注、划分与增强一体化流程设计

在目标检测任务中,高质量训练数据是模型性能提升的关键。本文围绕 YOLOv 系列模型,提出了一套从图像采集、标注、划分到增强的一体化数据构建流程。通过多源采集保证样本多样性,使用 LabelImg 完成 VOC 标注,并标准化转换为 YOLOv8 所需的 TXT 格式。数据集按 8:1:1 划分,提高模型泛化能力;引入 Gamma 变换、滤波、缩放、翻转和旋转等增强方法,提升模型对光照、尺度和方向变化的鲁棒性。实验表明,该方法有效缓解过拟合,显著提升模型识别精度与稳定性。

2025-05-05 19:27:20 1079

原创 基于YOLOv8与LSKNet的遥感图像旋转目标检测新框架 —LSKblock注意力机制在小目标检测中的性能优化与SOTA探索

针对遥感图像中目标尺度差异大、方向任意性强、背景复杂度高等挑战,本文提出一种基于 YOLOv8 与 LSKNet 的新型旋转目标检测框架。通过引入 LSKblock 注意力机制 ,实现对多尺度特征的有效建模与动态感受野调整,显著提升了模型对小目标与旋转目标的识别能力。实验表明,该方法在 DOTA、HRSC2016 等遥感数据集上取得了优于现有主流方法的检测精度,达到新的 SOTA 表现,为高分辨率遥感图像中的复杂目标识别提供了高效且具有推广价值的技术路径。

2025-05-05 16:32:56 965

原创 基于 SAFM 超分辨率上采样模块的 YOLOv12 改进方法—模糊场景目标检测精度提升研究

本文提出一种面向 YOLOv12 的创新性改进方法,引入 ICCV 2023 提出的空间自适应特征调制模块(SAFM) ,替代传统上采样操作,通过多尺度特征表示 与动态空间调制机制 ,有效增强非局部特征交互能力,显著提升模型在模糊和小目标场景下的检测精度。

2025-05-03 20:03:00 890

原创 基于D-Mixer与TransXNet的YOLOv8改进—融合全局-局部特征与空间降维注意力机制的CNN-ViT混合架构

本文提出一种面向 YOLOv8 的创新架构改进方案,引入两个核心模块:D-Mixer(Dual-level Feature Mixer) 与 TransXNet 中的 OSRA(Overlapping Spatial Reduction Attention)模块 ,分别实现多尺度特征的全局-局部信息聚合 与高效的空间注意力机制 ,构建出一种CNN与ViT深度融合的混合架构 ,在保持高精度的同时兼顾检测速度。

2025-05-03 16:45:49 731

原创 YOLO12架构优化——引入多维协作注意力机制(MCAM)抑制背景干扰,强化多尺度与小目标检测性能

本文提出了一种基于多维协作注意力机制(Multi-Dimensional Collaborative Attention Mechanism, MCAM)的改进方案,用于优化YOLOv12架构的目标检测性能。传统卷积神经网络(CNN)和现有注意力机制(如SE、CBAM等)在特征提取过程中存在维度割裂、信息损失和计算冗余等问题,限制了模型在复杂场景下的表现。MCAM通过轻量化设计实现了通道、高度、宽度三个维度的协同建模,动态增强关键特征表达,同时显著降低计算成本。

2025-04-25 16:53:31 1049

原创 YOLOv11架构革新——基于RFEM模块的小目标感受野增强与特征优化

随着目标检测技术的快速发展,小目标检测成为计算机视觉领域的重要研究方向之一。然而,由于小目标在图像中占据的像素比例较小、细节信息有限,传统的目标检测算法在处理此类任务时往往表现不佳。为解决这一问题,本文提出了一种基于感受野增强模块(Receptive Field Enhancement Module, RFEM)的YOLOv11架构改进方案。通过引入RFEM模块,显著增强了模型对小目标的感受野建模能力,并优化了特征提取过程,从而提升了小目标检测的精度和鲁棒性。

2025-04-24 15:49:51 752

原创 YOLOv11架构革新——基于增强型空间-通道协同模块(ESE)解决SE注意力机制中的通道信息丢失问题

随着深度学习在计算机视觉领域的快速发展,目标检测算法的性能不断提升。YOLO系列作为实时目标检测的标杆算法之一,凭借其高效性和准确性广受关注。然而,随着模型复杂度的增加,如何进一步优化特征提取和信息利用效率成为研究重点。本文提出了一种基于增强型空间-通道协同模块(Enhanced Spatial-Channel Synergy Module, ESE)的改进方案,旨在解决传统SE注意力机制中存在的通道信息丢失问题,从而提升YOLOv11模型的目标检测性能。

2025-04-23 16:30:09 661

原创 YOLOv11改进——基于注意力机制和密集小目标增强型EVA模块的设计与实现

近年来,目标检测技术在计算机视觉领域取得了显著进展,其中YOLO(You Only Look Once)系列算法因其高效性和准确性成为工业应用的主流选择之一。然而,随着应用场景的复杂化,特别是在密集目标和小目标检测任务中,传统YOLO模型仍存在一定的局限性。本文将探讨YOLO11的改进方向,重点分析其引入的注意力机制以及专为密集和小目标设计的EVAblock(Efficient Vision Attention Block),并阐述这些改进如何提升模型性能。

2025-04-20 16:31:55 596 1

原创 YOLOv11改进——融合BAM注意力机制增强图像分类与目标检测能力

本文提出了一种基于BAM(Bottleneck Attention Module)注意力机制的YOLO11改进方案,旨在提升模型在图像分类与目标检测任务中的性能。通过在骨干网络与颈部网络中嵌入BAM模块,增强了模型对通道与空间特征的动态捕捉能力,从而优化了复杂场景下的特征表达与注意力分配。

2025-04-14 15:44:04 1072

原创 YOLOv11改进——注意力机制优化 | 引入SpatialGroupEnhance空间分组增强模块

本文提出了一种基于SpatialGroupEnhance(SGE)空间分组增强机制的YOLOv11改进方案,旨在优化目标检测模型的特征表达能力。SGE通过将特征图划分为多个空间组并独立计算每组的重要性权重,实现了对局部细节信息的增强,同时保持较低的计算复杂度。该方法为提升目标检测模型性能提供了一种轻量级且高效的解决方案,具有广泛的应用前景。

2025-04-13 15:42:02 938

树莓派 + 相机 + uArm机械臂,识别网球 - 得出网球坐标 - 计算 uArm 各个舵机角度 - 抓取

项目名称:基于树莓派和uArm的网球抓取系统 项目目标:利用树莓派、相机和uArm机械臂实现网球的自动识别与抓取。系统需能识别视野内的网球,计算其坐标,并控制uArm机械臂精确抓取。 硬件资源: 树莓派4B:作为系统核心,运行图像处理和控制程序。 USB摄像头:捕捉图像,提供视觉输入。 uArm机械臂:执行抓取动作。 电源及连接线: 确保硬件正常运行。 软件资源: Raspbian:树莓派操作系统。 Python:主要编程语言。 OpenCV:图像处理库,用于颜色识别、轮廓检测。 NumPy:数值计算库,处理图像和坐标数据。 PySerial:串口通信库,控制uArm。 uArm SDK/API:控制机械臂运动。 技术栈: 图像处理:颜色空间转换、颜色阈值分割、轮廓检测、中心坐标计算。 坐标转换:相机坐标系到世界坐标系,再到机械臂坐标系的转换。 机械臂控制:逆运动学计算舵机角度,串口通信控制运动。

2025-03-08

opencv离线安装包

opencv-4.1.1.zip:这是 OpenCV 库的 4.1.1 版本的压缩包。 它包含了 OpenCV 的主要功能,例如图像处理、视频分析、目标检测等。 opencv-3.4.0.zip: 这是 OpenCV 库的 3.4.0 版本的压缩包。 这是一个较旧的版本,可能缺少一些新功能和优化,但可能更稳定或更适合某些特定的硬件或软件环境。 opencv\\\_contrib-4.1.1.zip:这是 OpenCV 的 "contrib" 模块的 4.1.1 版本的压缩包。 "contrib" 模块包含一些实验性的、不太稳定的或者非核心的功能。 这些功能可能在未来的版本中被合并到主库中,也可能被移除。 使用 contrib 模块需要单独安装。 opencv--contrib-3.4.0.zip: 这是 OpenCV 的 "contrib" 模块的 3.4.0 版本的压缩包。 同样,它包含了 3.4.0 版本的实验性和非核心功能。 请注意,名称中的双连字符 (--) 可能是笔误,通常应该是一个连字符 (-)。

2025-03-08

机械臂-python串口编程

本资源包旨在帮助用户学习如何使用Python进行机械臂控制。它包含了从基础的Python编程环境搭建到高级的机械臂控制原理介绍等多个方面的资料。 源代码 教程与文档: 1、python编程控制机械臂原理介绍.docx 2、windows下安装和配置pyhon环境.docx 3、安装pip工具.docx 4、安装pycharm免费编程工具.docx 5、python编程案例.docx 软件与库: 1、python-3.6.8-amd64.exe 2、python-3.10.4-amd64.exe 3、pycharm-community-2022.1.exe 4、dlib-19.24.0-cp39-cp39-linux_armv7l.whl 5、numpy-1.21.4-cp39-cp39-linux_armv7l.whl 6、numpy-1.24.2-cp39-cp39-linux_armv7l.whl 7、opencv_python-4.5.5.64-cp39-cp39-linux_armv7l.whl 8、pip-22.0.4-py3-none-any.whl

2025-03-08

OCR提取-内置教程和api

一套全面的光学字符识别(OCR)技术与API接口调用,包括通用文字识别、表格文字识别、手写文字识别、维码/条形码识别、办公文档识别等,旨在帮助用户快速掌握OCR的基本原理和应用方法。通过实际操作案例,用户能够更好地理解如何使用OCR技术解决现实中的文字识别问题。API文档详细介绍了各种OCR功能的调用方式及其参数设置,使开发者能够轻松集成OCR服务到自己的项目中。无论是初学者还是有经验的专业人士,都能从中受益。

2025-03-08

Navicat15安装包和解密工具

Navicat 15 是一款流行的数据库管理和开发工具,它支持多种数据库系统,包括 MySQL、MariaDB、SQL Server、Oracle、PostgreSQL 和 SQLite。 它提供了一个图形用户界面 (GUI),可以简化数据库管理任务,例如创建数据库、表、索引、视图、存储过程和函数,以及执行 SQL 查询和脚本。 1、连接到 MySQL 数据库: 在 Navicat 15 中,你可以创建一个新的 MySQL 连接,输入服务器地址、端口号、用户名和密码,然后连接到 MySQL 数据库。 2、创建表: 你可以使用 Navicat 15 的对象设计器来创建一个新的表,定义表的列名、数据类型、约束等。 3、执行 SQL 查询: 你可以使用 Navicat 15 的 SQL 编辑器来编写和执行 SQL 查询,例如 SELECT, INSERT, UPDATE, DELETE 等。 4、备份数据库: 你可以使用 Navicat 15 的备份功能来备份数据库,以防止数据丢失。 5、导入/导出数据: 你可以使用 Navicat 15 导入或导出数据到不同的格式。例如Excel、XML。

2025-03-08

机械臂开源文件(OpenArm-Project-MainCode.py)

本项目提供了用于719FLY底板机械臂的开源文件,包括控制部分和视觉部分的相关代码和文档。以下是具体资源列表及其详细描述: 1、控制部分: ①6轴姿态解算手写推导过程.pdf:包含详细的6轴姿态解算推导过程,从理论到实现步骤的详细说明。 ②readme.txt:包含项目的基本介绍、使用说明以及依赖项列表。 ③机械臂.zip:包含机械臂控制部分的所有源代码文件和配置文件,可以直接编译和运行。 2、视觉部分: 视觉部分.Py:包含用于机械臂视觉处理的Python脚本,实现图像采集、处理和目标识别等功能。 3、姿态解算演示程序 姿态解算演示程序.c:包含C语言编写的状态解算演示程序,用于验证姿态解算算法的正确性。

2025-03-08

商品销售商城-Python+Django

项目目标: 基于Python和Django框架,开发一个功能完善的鲜花销售平台,支持商品展示、订单管理、支付集成等功能。 功能模块: 1.用户管理:注册、登录、个人信息管理、订单历史查询。 2. 商品管理:商品分类、详情展示、搜索筛选。 3. 购物车与订单:购物车管理、订单提交、支付、状态跟踪。 4. 支付与物流:集成第三方支付(如支付宝、微信支付)、物流信息管理。 5. 促销活动:优惠券、满减、节日特惠。 6. 后台管理:商品、订单、用户管理,数据统计。 技术栈: - 后端:Python + Django,MySQL(Django ORM)。 - 前端:HTML/CSS/JavaScript,可选Vue.js或React。 - 支付集成:支付宝、微信支付等。 注:可以根据该换图片标题修改自己想要的系统。

2025-03-09

太阳能板异物700+数据集

├── Annotations/ ├── JPEGlmages/ ├── train/ ├── val/ ├── YOLOLabels/ ├── classes.txt └── input_class.txt 1、Annotations/:用于存储目标检测的标注文件(如XML格式)。 2、JPEGImages/:用于存储训练和验证所用的图像文件(如JPG格式)。 3、YOLOLabels/:用于存储YOLO格式的标注文件(如TXT格式)。 4、classes.txt:用于存储目标检测任务中的类别名称。 5、input_class.txt:用于存储输入的类别信息(可能用于模型配置或数据预处理)。 6、data/:用于存储训练和验证数据集,包含图像和对应的标注文件。

2025-03-08

机器人fans-树莓派控制的麦克纳姆轮小车

机器人fans是一款由树莓派控制的麦克纳姆轮小车,专为智能机器人爱好者和教育场景设计。这款小车采用麦克纳姆轮( Omni Wheel)技术,能够实现多方向灵活移动,轻松应对复杂地形和精准转向。树莓派作为核心控制器,支持丰富的编程接口和扩展功能,用户可以通过Python等编程语言实现自主导航、避障、路径规划等多种智能功能。 功能特点: 多向移动能力:麦克纳姆轮设计,支持360度自由移动和原地转向。 高扩展性:树莓派平台支持多种传感器(如超声波传感器、摄像头、红外传感器等)和外设扩展。 智能控制:可通过编程实现自主导航、路径规划、避障等功能,适合教育和科研用途。 模块化设计:硬件和软件均采用模块化设计,便于组装和功能升级。 技术亮点: 树莓派作为主控芯片,提供强大的计算能力和丰富的开发资源。 麦克纳姆轮结构优化,提升小车的稳定性和灵活性。 支持无线通信模块(如Wi-Fi、蓝牙),实现远程控制和数据传输。 应用场景: 教育与培训:用于机器人编程教学和实践。 娱乐与竞技:作为智能小车参与机器人竞赛或家庭娱乐。 工业与科研:可用于实验室自动化、物流运输等场景。

2025-03-08

自适应聚类分析算法-基于轮廓系数的自适应寻优

本资源包精心打造了K-means、自组织映射(SOM)以及SOM-K-means混合聚类算法的Python实现,旨在帮助用户轻松解决聚类分析中的难题。代码的核心优势在于其智能化的聚类数量选择机制:它利用轮廓系数作为聚类效果的评价标准,自动搜索用户指定的聚类数量范围,并找到最优的聚类方案。无需手动尝试和比较,即可获得最佳聚类结果。此外,我们还提供了轮廓系数的可视化图,让用户能够直观地了解不同聚类数量下的聚类效果,从而更好地理解和应用聚类结果。无论您是进行客户细分、图像分析还是其他数据挖掘任务,本资源包都能为您提供强大的支持。 三种聚类方法Python代码: K-means聚类、SOM聚类、SOM-K means聚类,均为Python代码。 使用方法: 输入待聚类的excle表数据以及想聚类的数量范围,运行代码,在excle中输出数据的聚类标签。 代码核心: 基于轮廓系数寻找最优分类数据,展示不同分类的轮廓系数图。

2025-03-11

OpenManus复刻版 Manus

OpenManus 是MetaGPT 团队推出的开源复刻版 Manus,提供无需邀请码的 Al Agent。OpenManus基于模块化设计,支持多种语言模型和工具链,能执行代码、处理文件、搜索网络信息等复杂任务。OpenManus 的核心优势在于实时反馈机制,用户能直观看到 A1的思考过程和任务执行进度。OpenManus具备强大的工具链和灵活的配置选项,方便开发者根据需求进行定制。 1、本地安装OpenManus:git clone https://github.com/mannaandpoem/OpenManus.git 2、创建环境:conda create -n open_manus python=3.12 3、激活环境:conda activate open_manus 4、安装依赖项:pip install -r requirements.txt 5、配置API:在OpenManus/config目录下,找到config.example.toml文件,复制一个副本,并将副本文件名改为config.toml。 6、启动OpenManus:python main.py

2025-03-09

太阳能电池板缺陷检测数据集

该数据集包含2624个300x300像素的8位灰度图像样本,这些图像是功能性和有缺陷的太阳能电池的不同退化程度,从44个不同的太阳能模块中提取。annotated图像中的缺陷属于内在或外在类型,已知会降低功率太阳能模块的效率。所有图像在大小和视角方面都进行了归一化处理。此外,在提取太阳能电池之前,消除了用于捕获EL图像的相机镜头引起的任何失真。

2025-03-08

生成动态的验证码显示文本

在使用 Python 中的 Pillow 库生成验证码时,我们可以通过指定字体来显示验证码的文本。体在验证码中的作用是为了增加验证码的难度和安全性,使其更难以被自动化程序破解。在 Pillow 库中,我们可以使用 ImageFont.truetype() 函数加载指定的字体文件,然后将字体应用到验证码文本中。通过选择适当的字体,我们可以为生成的验证码提供更好的安全性和识别难度。

2024-02-08

智能小车python源代码+路径规划

一个简单的智能小车的Python源代码+路径规划: 1、传感器数据采集:使用传感器(如摄像头、超声波传感器等)采集环境信息,例如道路图像、障碍物距离等。这些数据将用于路径规划和决策控制。 2、路径规划:路径规划是为智能小车选择最佳行驶路径的过程。其中最常用的算法是A算法。首先,将环境建模为图,然后根据图的拓扑结构和权重等信息,使用A算法找到从起点到终点的最短路径。 3、决策控制:基于路径规划的结果和传感器数据,智能小车需要做出决策,如前进、停止、转弯等。这一步通常利用机器学习或逻辑控制等方法来实现。

2024-02-02

基于深度学习+树莓派4b实现控制小车自动驾驶源码

自动驾驶源码的介绍: 1、数据采集:使用树莓派4B连接摄像头,并采集用于训练的图像数据。通过将摄像头安装在小车上,可以实时地采集道路图像以及与行驶相关的信息,如车道线、交通标志等。 2、数据预处理:对采集到的图像数据进行预处理,包括图像去噪、尺寸调整和颜色空间转换等。这些预处理步骤旨在提高深度学习算法的准确性和效率。 3、深度学习模型训练:使用深度学习框架(如TensorFlow或PyTorch)构建自动驾驶模型。这个模型可以使用卷积神经网络(CNN)来处理图像数据,并对图像中的车道线进行检测和跟踪。 4、模型优化和调试:通过反复训练和调整深度学习模型,进一步优化自动驾驶算法的准确性和鲁棒性。这可以包括调整模型的超参数、增加训练数据量和进行模型压缩等。 5、实时控制:将训练好的模型加载到树莓派4B上,实现实时控制小车的输出。通过将模型与小车的电机控制器或舵机控制器连接,可以根据模型的预测结果进行自动驾驶控制。

2024-02-02

书店销售平台python+MySQL+django

图书销售平台是一个基于 Django 框架构建的在线图书销售平台。它提供了一个完善的图书管理、浏览和购买系统,用户可以在平台上搜索图书、查看图书详情、下订单并进行在线支付。平台还提供了用户账户管理、订单管理和个人信息设置等功能,方便用户进行个性化的操作和管理。 使用 Django 框架可以极大地简化开发流程,它自带了丰富的功能和组件,包括用户认证、表单处理、数据库操作等,这些都能帮助开发者快速构建一个稳定和可扩展的应用程序。此外,Django 还提供了丰富的社区支持和文档,使得开发者可以轻松地找到解决方案和扩展功能。 图书销售平台利用 Django 的优势,可以快速开发和部署,提供了一个完善的购书体验和管理系统,帮助用户方便地浏览和购买自己喜欢的图书。同时,开发者也可以利用 Django 的强大功能和灵活性,来扩展和定制平台的功能,满足不同用户群体的需求。

2023-12-10

jspm网上书店销售管理系统

书店销售系统是一个用于管理和操作书店销售活动的软件系统。它提供了一种简化和自动化书籍库存管理、销售记录、顾客信息和其他相关业务的方式。 该系统通常具有以下主要功能: 1. 书籍管理:允许书店管理员添加、编辑和删除书籍信息,包括书名、ISBN 编码、作者、出版社、价格等。管理员可以使用系统来跟踪库存量、书籍类别、订购信息和进/出货时间。 2. 销售记录:书店员工可以使用销售系统记录每一笔销售交易的细节,包括销售日期、书籍数量、销售价格和支付方式。这些记录可以用于生成销售报告,帮助书店了解销售情况和趋势。 3. 顾客管理:系统允许书店记录顾客信息,包括姓名、联系方式、购买历史和偏好。这些信息可以用于提供个性化服务、发送推广活动和建立顾客忠诚度计划。 4. 库存管理:系统可以跟踪书店的库存量,及时提醒管理员何时需要补货。此外,它可以根据销售记录自动更新库存数量,确保库存的准确性和及时性。 5. 收银管理:销售系统通常具有收银功能,可以实时计算顾客购买书籍的总价并生成收据。这样,当顾客结账时,书店员工可以快速和准确地完成交易。 6. 报告和分析:系统可以生成各种销售报告和分析,

2023-12-07

springboot书店信息管理系统

Spring Boot书店信息管理系统是一个基于Spring Boot框架开发的软件系统,旨在帮助书店管理和操作书籍及相关信息。该系统提供了一种快速、简便和可扩展的方式来管理书店的库存、销售、顾客和其他重要业务活动。 该系统具有以下主要特点和功能: 1. 灵活的数据管理:Spring Boot书店信息管理系统允许管理员轻松添加、编辑和删除书籍信息,包括书名、作者、出版社、价格等。管理员可以灵活组织书籍分类和标签,并实时跟踪库存情况。 2. 销售记录和分析:系统支持记录每一笔销售交易的细节,并生成销售报告和分析。管理员可以了解销售趋势、畅销图书、顾客购买行为等信息,以便做出合理的经营决策。 3. 顾客管理:系统允许管理员管理顾客信息,包括姓名、联系方式、购买记录等。这些信息可以用于个性化服务、推送促销活动,并帮助书店建立顾客忠诚度计划。 4. 库存管理和补货提醒:系统可以实时跟踪书店的库存量,并根据销售记录自动更新库存。当库存低于设定的阈值时,系统可以发送提醒通知,帮助管理员及时进行补货。 5. 收银管理:系统提供收银功能,支持多种支付方式,并自动生成收据。书店员工可以快速、

2023-12-07

基于计算机视觉的草莓病害图像数据集

本数据集包含了大量草莓病虫害的图像数据,适用于计算机视觉和机器学习领域的研究。数据集涵盖了多种草莓病害和虫害的图像,包括但不限于白粉病、叶斑病、缺钙植株等。这些图像数据已经过标注,可以直接用于目标检测、图像分类等任务。 一、数据集内容: 1. 图像数量: 共458张图片。 2. 标注类别: 包括正常植株、缺钙植株、缺肥植株、白粉病植株、叶斑病植株等共计8类标签。 3. 数据格式: 原始数据集及根据YOLO标注好的数据集。 二、类别: flower 0 花 health 1 健康 ripe 2 熟 fruit 3 果 fertilizer 4 缺肥 powdery 5 白粉病 acalcerosis 6 缺钙 greyleaf 7 叶斑病 三、onnx 模型转换指令: python export.py --weights last.pt --img 640 --batch 1 # export at 640x640 with batch size 1 四、使用说明 1. 数据预处理: 数据集已经过预处理,可以直接用于训练和测试。 2. 适用场景: 适用于计算机视觉、机器学习、农业自动化等领域的研究。

2025-10-21

CAD设计+MCP插件+自动化建模与宏管理

该资源是FreeCAD MCP详细介绍了如何通过Model Control Protocol (MCP) 协议实现对FreeCAD的自动化控制。 内容概要:包括插件的核心功能(如MCP服务器/客户端、GUI面板、宏创建/运行/验证、视图切换)、详细的安装步骤(含Python依赖和环境配置)、使用方法(GUI和命令行)、工具函数列表及示例、典型的应用场景(如自动生成齿轮、法兰、船体模型)以及与外部AI工具(Claude, Cursor)和CAD处理工具(Trace)的集成方案。 适用人群:FreeCAD用户、机械设计工程师、自动化脚本开发者以及希望将AI生成代码或图纸转换为3D模型的研究人员。 使用场景:目标是通过API接口或命令行工具,实现FreeCAD模型的批量创建、参数化修改、远程控制和与其他智能工具的无缝集成,从而提升设计效率和实现智能化工作流。 其他说明:该插件支持Windows、Linux和macOS系统,需配合Python环境使用。

2025-09-11

计算机视觉+目标检测+鸟类数据集+YOLO格式转换

本资源为鸟类图像数据集转换为 YOLO 格式的完整版本,已按照 **8:2:1 的比例**划分为训练集(train)、验证集(val)和测试集(test),确保各类别分布均衡。数据集共包含 **200 种鸟类**,每类约有 30 至 70 张图像,**总图像数为 11,788 张**,具体划分为: - **训练集:9,414 张**(约占 80%) - **验证集:1,139 张**(约占 20%) - **测试集:1,235 张**(约占 10%) 所有图像均已整理至标准目录结构,边界框标注转换为 YOLO 归一化格式,并提供完整的 `data.yaml` 配置文件,开箱即用、一键训练。适用于计算机视觉科研、教学实践、算法竞赛等多种场景,是开展鸟类识别与检测任务的理想数据资源。

2025-09-05

AI工具-Cursor免额度工具-自动化脚本-重置配置

内容概要: 本项目是一款专为学习与研究目的设计的开源自动化脚本工具,名为 Cursor Free VIP。它通过自动化重置 Cursor AI 编辑器的核心配置文件(如 `storage.json`、`state.vscdb` 和 `machineId`),帮助用户绕过其 VIP 订阅限制,从而免费体验高级功能。工具内置对人机验证(Turnstile)的智能处理机制,并支持高度自定义的运行参数。 适用人群: - 希望免费使用 Cursor AI 高级功能的开发者和学生。 - 对自动化脚本、逆向工程和软件研究感兴趣的技术爱好者。 - 需要在 Windows、macOS 或 Linux 多平台上进行测试的研究人员。 使用场景及目标: - 学习研究:分析 Cursor 的认证机制和配置管理方式。 - 成本节约:在不支付订阅费用的情况下,临时使用 Cursor 的 VIP 功能进行开发或测试。 - 自动化操作:一键完成复杂的配置重置流程,避免手动操作的繁琐与错误。 其他说明: - 本工具**不生成**任何虚假的电子邮件账户或 OAuth 访问令牌,其原理是重置本地状态。 - 使用前**必须关闭 Cursor 应用程序**,并以管理员权限运行脚本以确保对系统文件的完全访问。 - 项目明确声明仅供学习和研究,使用者需自行承担相关风险,并建议在条件允许时支持原版软件。 - 项目采用 **CC BY-NC-ND 4.0** 许可证,禁止商业使用和修改后分发。

2025-09-01

AI编程助手+MonkeyCode+企业级平台

MonkeyCode 是一款由长亭科技推出的企业智能编程辅助平台。它不仅提供类似 Cursor 的代码补全和自然语言编程功能,更核心的是集成了企业级管理面板,支持私有化部署和完全离线使用,有效解决代码隐私和安全问题。其内置的代码安全扫描引擎可帮助发现AI生成代码中的潜在漏洞。本资源包含该项目的官方文档截图,展示了其主要功能界面,适用于希望在企业环境中安全、高效地使用AI进行开发的团队和个人。 内容概要: 介绍了 MonkeyCode 的定位(企业级AI编程助手)、核心优势(私有化、安全扫描、管理面板)和基础功能。 适用人群: 企业研发团队、对代码安全和隐私有严格要求的开发者。 使用场景及目标: 在需要保护代码资产、进行团队协作和审计的场景下,利用AI提升开发效率,同时保障代码质量和安全性。 其他说明: 明确指出这是项目文档的截图,用于展示功能。

2025-08-28

基于姿态估计的实时运动监控系统

内容概要:本系统基于姿态估计技术,实现对引体向上、俯卧撑、仰卧起坐、深蹲等常见运动的实时动作识别、计数与评分,并具备3D/2D姿态追踪、运动区域分割及跌倒检测等安全监控功能; 适用人群:健身爱好者、居家锻炼者、康复训练人员及AI与计算机视觉学习者; 使用场景及目标:适用于家庭、健身房或康复中心,旨在通过AI技术提供科学、安全、即时的运动反馈,提升锻炼效果并预防运动损伤; 其他说明:系统支持可视化分析,可扩展用于体育教学、智能教练或健康监测等场景; 如何运行:首先运行 `pip install -r requirements.txt` 安装所需依赖,然后执行 `python main.py` 启动系统即可开始使用。

2025-08-27

打造全场景、跨领域、多模态的AI工作流 - 开源图像标注工具 X-AnyLabeling

X-AnyLabeling是一款基于AI推理引擎和丰富功能特性于一体的强大辅助标注工具,其专注于实际应用,致力于为图像数据工程师提供工业级的一站式解决方案,可自动快速进行各种复杂任务的标定。 - 支持`GPU`加速推理。 - 支持一键预测所有图像。 - 支持`图像`和`视频`处理。 - 支持自定义模型和二次开发。 - 支持一键导入和导出多种标签格式,如 COCO\VOC\YOLO\DOTA\MOT\MASK\PPOCR 等; - 支持多种图像标注样式,包括 `多边形`、`矩形`、`旋转框`、`圆形`、`线条`、`点`,以及 `文本检测`、`识别` 和 `KIE` 标注; - 支持各类视觉任务,如`图像分类`、`目标检测`、`实例分割`、`姿态估计`、`旋转检测`、`多目标跟踪`、`光学字符识别`、`图像文本描述`、`车道线检测`、`分割一切`等。 模型库:Object Detection、2D Lane Detection、Image Tagging、SAM、SOD with SAHI、OCR、Grounding DlNO、BC-SAM、Facial LandmarkDetection、MOT、Recognition、Skin-SAM、2D Pose Estimation、InstanceSegmentation、Rotation、Polyp-SAM

2025-05-28

60个项目管理甘特图表模板

这些甘特图模板资源为项目团队提供了一种高效、直观的方式来规划与管理项目进度。通过将复杂的任务分解为可视化的时间轴,甘特图不仅帮助团队清晰地了解每一项工作的起止时间、优先级和相互依赖关系,还能有效提升项目的整体可控性和透明度。借助这些模板资源,团队成员能够更轻松地识别关键路径、预判潜在风险,并及时进行调整,从而确保项目按时推进。 此外,甘特图在提升团队协作方面也发挥了重要作用。它为所有相关人员提供了一个统一的沟通平台,使得任务分配更加明确,责任划分更加清晰。无论是项目经理还是普通成员,都能通过甘特图快速掌握项目的最新进展,减少信息不对称带来的沟通障碍。 用户可以根据自身项目的规模、复杂程度以及团队的工作习惯,灵活选择合适的甘特图工具或模板,并根据实际需求进行个性化定制和调整。例如,对于需要高度协同的大型项目,可以选择支持在线协作与实时更新的专业软件;而对于小型项目或初创团队,则可以使用简单的Excel或Google Sheets模板实现基础的进度管理。 总之,项目管理甘特图模板作为一种功能强大且易于使用的工具,已经成为现代项目管理中不可或缺的一部分。它不仅提升了项目计划的科学性与执行效率,也为团队之间的协作与沟通提供了有力支撑,是推动项目顺利实施的重要保障。

2025-05-21

xAI公司开源Grok的系统提示词(System Prompt)

xAI公司开源Grok的系统提示词(System Prompt),其中包括对话,deepresearch等提示词。 你是Grok 3,一个由xAI构建的充满好奇心的AI。你会收到包含在<query></query>标签中的用户查询,同时为了帮助你回答这个查询,你还会收到包含在<thinking></thinking>标签中的思考过程。这个思考过程是你用来回答用户查询的思考方式。 <query>{{question}}</query> <thinking>{{answer}}</thinking> % if not prefill %} 现在,使用思考过程来回答用户的查询。 - 思考过程可能包含一些可以忽略的无关信息。 - 当前时间是{{current_time}}。忽略任何与此相矛盾的内容。 - 不要重复用户的查询。 - 除非非常明显,否则不要提及用户的问题可能有拼写错误。以原始用户问题作为真实来源。 - 使用markdown格式美观连贯地呈现你的回答。你可以重新安排信息的顺序以使回答更好。 - 从直接回答部分开始(不要在标题或任何地方提及"直接回答"),然后呈现一个**非常长**的调查笔记风格的调查部分(不要在标题中提及"调查"),其中包含所有细节。用单个水平分隔线分隔这两部分,**不要在其他任何地方**使用水平分隔线。 - 直接回答部分应根据不确定性或复杂性直接解答用户的查询。为普通人编写的答案应该清晰简单易懂。 {% if contains_url %}

2025-05-18

Transformers讲解-论文+源码.zip

本资源包含Transformer模型的经典论文《Attention Is All You Need》的中英文版本以及基于PyTorch的完整源码实现,配套详细学习笔记,帮助你从理论到实践全面掌握Transformer架构。

2025-05-18

月饼数据集(训练集273张、验证集31张)

本月饼数据集主要用于图像相关的机器学习和深度学习任务,例如月饼的类别识别、质量检测、外观特征分析等。数据集共包含 304 张月饼相关的图像,其中训练集有 273 张图像,用于模型的训练;验证集有 31 张图像,用于在训练过程中评估模型的性能,以调整模型参数、防止过拟合等。

2025-05-04

轻量级语言模型的训练与应用

「大模型」2小时完全从0训练26M的小参数GPT!Train a 26M-parameter GPT from scratch in just 2h! 项目包含 MiniMind-LLM结构的全部代码(Dense+MoE模型)。 包含Tokenizer分词器详细训练代码。 包含Pretrain、SFT、LoRA、RLHF-DPO、模型蒸馏的全过程训练代码。 收集、蒸馏、整理并清洗去重所有阶段的高质量数据集,且全部开源。 从0实现预训练、指令微调、LoRA、DPO强化学习,白盒模型蒸馏。关键算法几乎不依赖第三方封装的框架,且全部开源。 同时兼容transformers、trl、peft等第三方主流框架。 训练支持单机单卡、单机多卡(DDP、DeepSpeed)训练,支持wandb可视化训练流程。支持动态启停训练。 在第三方测评榜(C-Eval、C-MMLU、OpenBookQA等)进行模型测试。 实现Openai-Api协议的极简服务端,便于集成到第三方ChatUI使用(FastGPT、Open-WebUI等)。 基于streamlit实现最简聊天WebUI前端。 全面兼容社区热门llama.cpp、vllm、ollama推理引擎或Llama-Factory训练框架。 复现(蒸馏/RL)大型推理模型DeepSeek-R1的MiniMind-Reason模型,数据+模型全部开源!

2025-04-30

YOLO12改进-模块-引入​多维协作注意力MCAM 抗背景干扰,增强多尺度、小目标

MCA的整体结构由三个并行的注意力分支(通道、高度、宽度)和一个动态聚合模块组成,每个分支通过维度旋转和轻量化计算实现多维度协作,以下是详细描述: 1.通道分支:通道分支直接处理输入特征图的通道维度。首先,对每个通道同时计算全局平均池化(提取特征整体强度)和全局标准差池化(衡量特征分布的离散程度),两种统计量通过可学习权重融合,形成更全面的通道描述,融合后的统计量通过一维卷积(而非全连接层)生成通道注意力权重,该卷积仅需极少的参数量即可捕捉通道间局部依赖关系。最后,权重与原始特征逐通道相乘,强化重要通道(如与目标类别相关的特征通道)的响应,抑制冗余通道。 2.高度分支:高度分支的目标是定位垂直方向(图像上下区域)的关键位置。为实现轻量化设计,将输入特征图旋转,使高度维度转换为“伪通道”维度。例如,原始特征维度为“通道x高度x宽度”(如64x224x224),旋转后变为“高度x通道x宽度”(224x64x224),此时每个"伪通道”对应原始图像的一行像素。随后,复用通道分支的流程:对每个"伪通道”计算均值与标准差统计量,融合后通过一维卷积生成高度注意力权重。例如,在行人检测任务中,高度分支可能增强图像中上部(对应人体头部和躯干)的权重。最后将加权后的特征逆旋转回原始维度,完成垂直方向的特征增强。 3.宽度分支:宽度分支与高度分支对称,关注水平方向(图像左右区域)的重要性。通过旋转操作将宽,度维度转换为“伪通道”,例如原始特征变为"宽度x高度x通道”(224x224x64),每个“伪通道”对应原始图像的一列像素。复用通道分支的统计量融合与一维卷积生成宽度注意力权重。例如,在车辆检测中,宽度分支可能强化图像左右两侧(对应车轮位置)的特征响应。逆旋转后恢复原始维度,完成水平方向的特征增强。 4.动态门控与特征聚合:动态门控:在三个分支的一维卷积中引入轻量级自适应机制。

2025-04-25

自然语言处理系列-安装nltk-data和punkt库

NLTK 是一个广泛使用的 Python 库,专注于自然语言处理(NLP)。它提供了许多工具和算法来处理文本数据,例如分词、词性标注、句法分析等。然而,这些功能通常需要依赖大量的语言数据(如语料库、词典、预训练模型等),这些数据被统称为 NLTK 数据资源 。 主要内容: a. 语料库(Corpora) 这些是用于训练和测试 NLP 模型的文本数据集合。 示例:gutenberg(古登堡计划的书籍)、brown(布朗语料库)、reuters(路透社新闻语料库)等。 b. 词典与词汇资源(Lexical Resources) 包括词频表、同义词词典(如 WordNet)、停用词列表等。 示例:wordnet(WordNet 同义词数据库)、stopwords(多语言停用词列表)。 c. 预训练模型(Pre-trained Models) 包含一些常用的 NLP 模型,例如分词器、词性标注器、命名实体识别器等。 示例:punkt(用于句子分割的预训练模型)、averaged_perceptron_tagger(词性标注器)。 d. 其他资源 包括一些辅助工具和配置文件,用于支持 NLTK 的各种功能。

2025-04-09

定期体检,智能清理,C盘空间无忧

C盘空间告急?Wise Care 365 助您轻松解决!它能智能扫描并清理C盘中的垃圾文件、无效注册表项和隐私痕迹,释放宝贵的磁盘空间。通过定期进行电脑体检,Wise Care 365 可以自动检测并清理这些垃圾,保持系统清洁高效。不仅如此,它还提供电脑体检功能,一键优化系统设置,提升运行速度。Wise Care 365 还提供大文件管理、启动项管理等实用工具,让您全面掌控电脑,告别卡顿,享受流畅体验。软件还提供系统优化、隐私保护等功能,全方位呵护您的电脑。您还可以设置自动清理计划,让 Wise Care 365 定期为您清理C盘,保持电脑最佳状态。

2025-03-11

深度学习领域数据集汇总及应用

内容概要:本文档汇总了大量用于机器学习和深度学习研究的开源数据集,主要侧重于目标检测、人脸识别人、动作识别等领域。数据集涵盖多个领域,包括但不限于航空图像数据集(如AI-TOD航空图像数据集)、交通标志数据集(如GTSRB德国交通标志数据集)、医学图像数据集、行人检测数据集等,每个数据集都有详细描述及下载地址,同时涵盖了各个领域的具体应用场景,比如小物体目标检测、航空图像解释、行人和人群统计等。 适用人群:从事计算机视觉、图像处理、自动化等领域的科研工作者和技术开发者,尤其是需要大量标记图像来进行实验或者模型训练的相关从业者。 使用场景及目标:该文档提供的资源可用于多种目的:(1) 开展特定领域(如遥感、医疗成像、自动驾驶等)的研究与产品开发;(2) 提供训练素材帮助提升现有模型的准确性与稳定性;(3) 支持学生或者学者快速获取所需资源进行教学与科研探索;(4) 协助初创团队寻找合适的数据源推动技术创新。 其他说明:除了丰富的图像类数据外,还有一些文本数据和其他类型的数据可供参考(例如文档影印和内容数据),这为进一步拓宽研究视角提供了可能。值得注意的是,部分数据集涉及到版权和隐私保护问题,使用者应在法律法规范围内合理使用,并确保所有必要的授权或许可均已获得。

2025-03-13

100套求职简历模板汇总

本资源汇集了100套精心设计的求职简历模板,涵盖了多个行业与职业类型,旨在为求职者提供多样化、专业化的简历撰写支持。每套模板均采用清晰的排版结构,包含个人信息、教育背景、工作经历、技能专长、项目经验等核心模块,并提供多种格式(如Word、PDF、PPT等),便于用户根据自身需求进行个性化编辑与快速应用。 适用人群: 应届毕业生 职场新人 资深从业者 跨行业求职者

2025-03-14

DeepSeek赋能音箱-智能语音交互新范式

小爱/小米音箱接入DeepSeek,是智能硬件与大语言模型深度融合的创新实践,旨在打造高效、精准的AI语音助手。本项目资源详细解析了小米音箱硬件接口的适配过程,包括音频输入输出优化、设备认证及网络通信配置,确保硬件与软件的无缝衔接。同时,深入探讨了DeepSeek API的集成方法,涵盖语音唤醒、指令解析、上下文理解及多轮对话管理,显著提升了语音交互的流畅性与智能化水平。此外,通过智能家居场景联动案例(如灯光控制、日程管理、家电操作等),展示了从技术实现到实际应用的完整链路。这一方案不仅为开发者提供了可复用的技术框架,也为用户带来了更自然、便捷的语音交互体验,助力构建智能化家居生态。

2025-03-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除