集成ES分组查询统计求平均值

本文介绍了如何在升级到ES8.0.0后,通过RestHighLevelClient对机房机柜物联网设备的温湿度数据进行分组并计算24小时平均值,包括依赖库的选择、配置类的设置以及使用示例。
摘要由CSDN通过智能技术生成

前言

       之前其实写过ES查询数据,进行分组聚合统计:
复杂聚合分组统计实现


一、目标场景

  1. 机房机柜的物联网设备上传环境数据,会存储到ES
  2. 存到ES的温湿度数据需要查询,进行分组后,再聚合统计求平均值

二、使用步骤

1.引入库

       我这里因为ES服务已经升级到8.0.0了,然后ES数据查询分组,我这里需要对时间进行格式化,再聚合avg,所以客户端相关版本用的7.17.4

<dependency>
	<groupId>org.elasticsearch.client</groupId>
	<artifactId>elasticsearch-rest-client</artifactId>
	<version>7.17.4</version>
	<exclusions>
		<exclusion>
			<groupId>org.elasticsearch</groupId>
			<artifactId>elasticsearch</artifactId>
		</exclusion>
	</exclusions>
</dependency>
<dependency>
	<groupId>org.elasticsearch.client</groupId>
	<artifactId>elasticsearch-rest-high-level-client</artifactId>
	<version>7.17.4</version>
	<exclusions>
		<exclusion>
			<groupId>org.elasticsearch</groupId>
			<artifactId>elasticsearch</artifactId>
		</exclusion>
	</exclusions>
</dependency>

<dependency>
	<groupId>org.elasticsearch</groupId>
	<artifactId>elasticsearch</artifactId>
	<version>7.17.4</version>
</dependency>

2.配置类

       目前我们就是单服务的,这个配置类够用了。其实我配置类就是要把RestHighLevelClient注入,并交给spring管理。

/**
 * ES配置类
 * @author zwmac
 */
@Configuration
@Data
public class ElasticSearchConfig {

    @Value("${es.host}")
    private String host;
    @Value("${es.port}")
    private int port;
    @Value("${es.username}")
    private String loginName;
    @Value("${es.password}")
    private String password;
    private RestHighLevelClient client;

    @Bean
    public RestHighLevelClient client() {
        final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
        credentialsProvider.setCredentials(AuthScope.ANY,
                new UsernamePasswordCredentials(loginName, password));
        HttpHost[] httpHostArray = new HttpHost[1];
        httpHostArray[0] = new HttpHost(host, port);
        RestClientBuilder restClientBuilder = RestClient.builder(httpHostArray)
                .setHttpClientConfigCallback(httpClientBuilder -> {
                    httpClientBuilder.disableAuthCaching();
                    return httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
                });
        restClientBuilder.setRequestConfigCallback(requestConfigBuilder -> requestConfigBuilder
                .setConnectTimeout(60000)
                .setSocketTimeout(150000));
        client = new RestHighLevelClient(
                restClientBuilder
        );
        return client;
    }
}

3.使用


    @Resource
    private RestHighLevelClient restHighLevelClient;

/**
     * 查询温湿度24小时平均值
     * @param deviceCode 设备编码
     * @param startTime 开始时间
     * @param endTime 结束时间
     * @param humName 湿度字段名
     * @param tempName 温度字段名
     * @return 温湿度24小时平均值
     */
    private TreeMap<String, Map<String, Double>> queryTempHumDayAvg(String deviceCode, Date startTime, Date endTime, String humName, String tempName) {
        TreeMap<String, Map<String, Double>> treeMap = new TreeMap<>();
        //ES查询
        String index = EsCalendar.getDeviceFlowIndex(startTime, endTime);
        SearchRequest searchRequest = new SearchRequest(index);
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        //忽略不可用索引,允许索引不不存在,通配符表达式将扩展为打开的索引
        searchRequest.indicesOptions(IndicesOptions.fromOptions(true, true, true, false));

        String timeFmt = "yyyy-MM-dd";

        // 组装ES请求数据
        String startTimeStr = DateUtil.format(startTime, DatePattern.NORM_DATETIME_PATTERN);
        String endTimeStr = DateUtil.format(endTime, DatePattern.NORM_DATETIME_PATTERN);
        QueryBuilder rangeQuery = QueryBuilders.rangeQuery("createTime").lte(endTimeStr).gte(startTimeStr);

        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        // 必须为deviceCode
        boolQueryBuilder.must(QueryBuilders.termQuery("deviceCode", deviceCode));
        rangeQuery = QueryBuilders.boolQuery().must(rangeQuery).must(boolQueryBuilder);
        QueryBuilder boolQuery = QueryBuilders.boolQuery().must(rangeQuery);

        searchSourceBuilder.query(boolQuery).size(0);


        //平均值 温度
        //String tempName = "temp_avg";
        String tempAvgName = tempName + "_avg";
        String tempFactorName = "data." + tempName;
        AvgAggregationBuilder tempAvgAggregationBuilder = AggregationBuilders.avg(tempAvgName).field(tempFactorName);

        //平均值 湿度
        //String humName = "hygrometer_avg";
        String humAvgName = humName + "_avg";
        String humFactorName = "data." + humName;
        AvgAggregationBuilder humAvgAggregationBuilder = AggregationBuilders.avg(humAvgName).field(humFactorName);


        String createTimeGroup = "createTimeGroup";
        DateHistogramAggregationBuilder aggregation = AggregationBuilders.dateHistogram(createTimeGroup)
                .field("createTime").fixedInterval(DateHistogramInterval.DAY)
                .format(timeFmt)
                //过滤掉count为0的数据
                .minDocCount(1).subAggregation(tempAvgAggregationBuilder).subAggregation(humAvgAggregationBuilder);

        //分组条件
        searchSourceBuilder.aggregation(aggregation);
        searchRequest.source(searchSourceBuilder);


        // 按照因子列表查询
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = null;
        Map<String, Map<String, Double>> mp = new HashMap<>();
        try {
            log.info("方法getCabinetTempHum24HourAvg查询ES请求数据:" + searchRequest);
            searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            log.info("方法getCabinetTempHum24HourAvg查询ES响应数据:" + searchResponse.toString());
            Aggregations aggregations = searchResponse.getAggregations();
            if (aggregations != null) {
                //组织出参数
                aggregations.forEach(agg -> {
                    ParsedDateHistogram parsedDateHistogram = (ParsedDateHistogram) agg;
                    List buckets = parsedDateHistogram.getBuckets();
                    if (CollectionUtil.isNotEmpty(buckets)) {
                        buckets.forEach(bucket -> {
                            ParsedDateHistogram.ParsedBucket timeGroupTerm = (ParsedDateHistogram.ParsedBucket) bucket;
                            String timeStr = timeGroupTerm.getKeyAsString();

                            Aggregations subAggregations = timeGroupTerm.getAggregations();
                            if (subAggregations != null) {
                                Map<String, Double> tempHumMap = new HashMap<>();
                                Map<String, Aggregation> subAggMap = subAggregations.asMap();
                                if (subAggMap != null) {
                                    Aggregation tempAgg = subAggMap.get(tempAvgName);
                                    if (tempAgg != null) {
                                        ParsedAvg tempAggPdh = (ParsedAvg) tempAgg;
                                        tempHumMap.put(tempName, tempAggPdh.getValue());
                                    }
                                    Aggregation humAgg = subAggMap.get(humAvgName);
                                    if (humAgg != null) {
                                        ParsedAvg humAggPdh = (ParsedAvg) humAgg;
                                        tempHumMap.put(humName, humAggPdh.getValue());
                                    }

                                }
                                mp.put(timeStr, tempHumMap);
                            }

                        });
                    }

                });

            }
            //数据补全
            List<DateTime> dateTimeList = DateUtil.rangeToList(startTime, DateUtil.offsetHour(endTime, -1), DateField.HOUR_OF_DAY);
            if (CollectionUtil.isNotEmpty(dateTimeList)) {
                String finTempName = "temp_avg";
                String finHumName = "hum_avg";
                dateTimeList.forEach(dateTime -> {
                    String timeStr = DateUtil.format(dateTime, timeFmt);
                    Map<String, Double> finTempHumMap = new HashMap<>();
                    Map<String, Double> tempHumMap = mp.get(timeStr);
                    if (tempHumMap == null) {
                        finTempHumMap.put(finTempName, 0.0);
                        finTempHumMap.put(finHumName, 0.0);
                    } else {
                        Double tempAvg = tempHumMap.get(tempName);
                        Double humAvg = tempHumMap.get(humName);
                        finTempHumMap.put(finTempName, tempAvg);
                        finTempHumMap.put(finHumName, humAvg);
                    }
                    treeMap.put(timeStr, finTempHumMap);
                });
            }

        } catch (Exception e) {
            log.error("方法countByEs查询ES异常", e);
        }

        return treeMap;
    }

关键点注意:

  1. QueryBuilders.rangeQuery传入的时间精度,需要yyyy-MM-dd HH:mm:ss,否则会报错在这里插入图片描述

  2. 这里对时间格式化分组,使用的是DateHistogramAggregationBuilder
    这个在EsApi7+就废弃了calendarInterval,替换新的fixedInterval

  3. 分组再聚合,注意嵌套关系,各位自己理解下subAggregation

  4. 最后数据查询出来后,迭代解析,注意理解ParsedDateHistogram取值、parsedDateHistogram.getBuckets()、迭代解析

总结

  • gs一直用老版本的ES6,这次终于被逼的更新了吧,真好。(之前一直建议、希望,都。。。。)
  • 本来很想引入EasyEs用用,但是总有同事不认可,算了
  • 之前也建议给ES装上sql-package插件,让DBeaver可以连接,试过一阵子,新版本又没装,算了
  • 其他就没啥好说的了,唯一就是restHighLevelClient现在在7+也被标记为过时了,下次有机会,这个再改改。
  • 希望能帮到大家,uping!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥仔哥哥1930

来一波支持,吃不了亏上不了当

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值