ZOJ 3747 Attack on Titans

原题地址


题意

存在三种士兵G,R,P站成一排,总共N人,要求至少有M个G类士兵连续地站着,至多有K个R类士兵连续地站着,问合法的排列数。


题解

至少有M个G类士兵连续地站着这个条件不好处理,但是可以转化为“至多N个G类士兵连续”的方案数减去“至多M-1个G类士兵连续”的方案数。

接下来就是DP了……

dp[i][0]表示第i个位置为P类士兵的合法情况dp[i][1]表示第i个位置为R类,依次类推,注意,dp的是合法情况,这点在状态转移中不搞清楚就会写错。

但是还是玩了一个下午:一开始没看清楚是多组数据,接下来多用了两个memset超时(ZOJ什么鬼?),再然后各种小错误不断,剩余系计算中一不小心爆了long long,一不小心又算出负数……


下面第一份代码是我自己的,第二份是参考晚上大神的代码写的,很明显,自己写的不但冗长,而且极易出错,还不方便修改


#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
const int maxn=1e6;
const int h=1e9+7;

LL dp1[maxn+5][3];
LL dp2[maxn+5][3];
//LL sum[maxn+5];

void solve(int n,int m,int k)
{
	
	
	//memset(dp1,0,sizeof(dp1));
	//memset(dp2,0,sizeof(dp2));
	
	dp1[1][0]=1;
	dp1[1][1]=1;
	dp1[1][2]=1;
	for (int i=2;i<=n;++i)
	{
		LL sum=0;
		for (int j=0;j<=2;++j) sum+=dp1[i-1][j];
		sum%=h;
		
		dp1[i][0]=sum;
		dp1[i][1]=sum;
		if (i==k+1) dp1[i][1]=(dp1[i][1]-1+2*h)%h;
		if (i>k+1) dp1[i][1]=(dp1[i][1]-dp1[i-k-1][0]-dp1[i-k-1][2]+2*h)%h;
		dp1[i][2]=sum;
	}
	
	dp2[1][0]=1;
	dp2[1][1]=1;
	dp2[1][2]=m==1?0:1;
	
	for (int i=2;i<=n;++i)
	{
		LL sum=0;
		for (int j=0;j<=2;++j) sum+=dp2[i-1][j];
		sum%=h;
		
		dp2[i][0]=sum;
		dp2[i][1]=sum;
		if (i==k+1) dp2[i][1]=(dp2[i][1]-1+h)%h;
		if (i>k+1) dp2[i][1]=(dp2[i][1]-dp2[i-k-1][0]-dp2[i-k-1][2]+2*h)%h;
		dp2[i][2]=sum;
		if (i==m) dp2[i][2]=(dp2[i][2]-1+h)%h;
		if (i>m) dp2[i][2]=(dp2[i][2]-dp2[i-m][0]-dp2[i-m][1]+2*h)%h;
	}
	
	LL ans=0;
	for (int i=0;i<=2;++i)
	{
		ans=(ans+dp1[n][i]-dp2[n][i]+h)%h;
	}
	
	printf("%lld\n",ans);
	//cout<<ans<<endl;
}

int main(void)
{
	#ifdef ex1
	freopen ("in.txt","r",stdin);
	freopen ("1.txt","w",stdout);
	#endif
	int n,m,k;
	memset(dp1,0,sizeof(dp1));
	memset(dp2,0,sizeof(dp2));
	while (~scanf("%d%d%d",&n,&m,&k))
	{
		solve(n,m,k);
	}
}


以下是参考大神修改的结果

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL h=1000000007;
const int maxn=1000010;

LL dp[maxn][3];
int n,m,k;

LL solve(int u,int v){
    dp[1][2]=1;
    dp[1][1]=v==0?0:1;
	dp[1][0]=u==0?0:1; 
    for(int i=2;i<=n;++i)
	{
        LL sum=(dp[i-1][0]+dp[i-1][1]+dp[i-1][2])%h;
        dp[i][2]=sum;
        dp[i][0]=sum;
        if(i==u+1) dp[i][0]=(dp[i][0]-1+h)%h;
        if(i>u+1) dp[i][0]=(dp[i][0]-dp[i-u-1][1]-dp[i-u-1][2]+2*h)%h;
        dp[i][1]=sum;
        if(i==v+1) dp[i][1]=(dp[i][1]-1+h)%h;
        if(i>v+1) dp[i][1]=(dp[i][1]-dp[i-v-1][0]-dp[i-v-1][2]+2*h)%h;
    }
    return (dp[n][0]+dp[n][1]+dp[n][2])%h;
}
int main()
{
	#ifdef ex1
	freopen ("in.txt","r",stdin);
	freopen ("2.txt","w",stdout);
	#endif
	
    while(~scanf("%d%d%d",&n,&m,&k))
    {
    	printf("%lld\n",((solve(n,k)-solve(m-1,k))%h+h)%h);
	}  
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值