HDU 4489 The King’s Ups and Downs

12 篇文章 0 订阅
4 篇文章 0 订阅

原题地址


题意

给定N个小人,小人身高各不相同,现在N个小人站成一排,要求任意连续的3个小人的身高成“高低高”或者“低高低”,问可能的排列数目。


题解

首先,dp[n]是N个人的合法排列数,那么dp[n+1]应该怎么抽象呢?

为了使决策有序,假设前N个人身高1-N,那么第N+1个人身高就是N+1.

为什么可以这样假设呢,因为dp[N+1]应该是一个只和N有关的数,那么插入的人的身高顺序应该是随意的。

dp[n]是1-n的合法数,怎么转移到dp[n+1]呢?

考虑要把n+1插人已有的dp[n]的排列中,因为n+1的无论插到哪里都是波峰,所以它插入位置的左边一定是递减,右边一定是递增。

所以我们需要增加维数,dp[n][0]表示前N个人合法排列中末尾是递减的数目,dp[n][1]代表递增的数目

但是我们所需要的不仅仅是末尾的状态,还需要开头的状态,开头的状态就很不好维护了。

这里有两个性质

1.递减结尾的序列和递增开头的序列是一一对应的,只要沿中心线不断首尾交换就好了

2.递增结尾的序列和递减结尾的序列是一一对应的,只要把整个序列的大小关系颠倒,也就是原来第i大的数,换成第n-i+1大


绕了一个大圈,其实dp只要一维就够了,维护长度为n,递减或者递增的序列合法数


转移方程

temp=sigma(dp[j]*dp[i-j-1]*C[i-1][j],0<=j<=i) j是插入位置,c[i][j]是组合数公式

dp[i]=temp/2


#include<bits/stdc++.h>

using namespace std;
typedef long long LL;

const int maxn=20;

LL C[maxn+5][maxn+5];
LL dp[maxn+5];

int main(void)
{
	#ifdef ex
	freopen ("in.txt","r",stdin);
	#endif
	
	for (int i=1;i<=maxn;++i) C[i][0]=1;
	for (int i=1;i<=maxn;++i)
	{
		for (int j=1;j<=i;++j)
		{
			C[i][j]=(i-j+1)*C[i][j-1]/j;
		}
	}
	
	dp[0]=dp[1]=1;
	
	for (int i=2;i<=maxn;++i)
	{
		LL temp=0;
		for (int j=0;j<=i;++j)
		{
			temp+=dp[j]*dp[i-j-1]*C[i-1][j];
		}
		dp[i]=temp/2;
	}
	
	int T;
	scanf("%d",&T); 
	while (T--)
	{
		int i,n;
		scanf("%d%d",&i,&n);
		printf("%d %I64d\n",i,n==1?1:dp[n]<<1);
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值