题意
给定N个小人,小人身高各不相同,现在N个小人站成一排,要求任意连续的3个小人的身高成“高低高”或者“低高低”,问可能的排列数目。
题解
首先,dp[n]是N个人的合法排列数,那么dp[n+1]应该怎么抽象呢?
为了使决策有序,假设前N个人身高1-N,那么第N+1个人身高就是N+1.
为什么可以这样假设呢,因为dp[N+1]应该是一个只和N有关的数,那么插入的人的身高顺序应该是随意的。
dp[n]是1-n的合法数,怎么转移到dp[n+1]呢?
考虑要把n+1插人已有的dp[n]的排列中,因为n+1的无论插到哪里都是波峰,所以它插入位置的左边一定是递减,右边一定是递增。
所以我们需要增加维数,dp[n][0]表示前N个人合法排列中末尾是递减的数目,dp[n][1]代表递增的数目
但是我们所需要的不仅仅是末尾的状态,还需要开头的状态,开头的状态就很不好维护了。
这里有两个性质
1.递减结尾的序列和递增开头的序列是一一对应的,只要沿中心线不断首尾交换就好了
2.递增结尾的序列和递减结尾的序列是一一对应的,只要把整个序列的大小关系颠倒,也就是原来第i大的数,换成第n-i+1大
绕了一个大圈,其实dp只要一维就够了,维护长度为n,递减或者递增的序列合法数
转移方程
temp=sigma(dp[j]*dp[i-j-1]*C[i-1][j],0<=j<=i) j是插入位置,c[i][j]是组合数公式
dp[i]=temp/2
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=20;
LL C[maxn+5][maxn+5];
LL dp[maxn+5];
int main(void)
{
#ifdef ex
freopen ("in.txt","r",stdin);
#endif
for (int i=1;i<=maxn;++i) C[i][0]=1;
for (int i=1;i<=maxn;++i)
{
for (int j=1;j<=i;++j)
{
C[i][j]=(i-j+1)*C[i][j-1]/j;
}
}
dp[0]=dp[1]=1;
for (int i=2;i<=maxn;++i)
{
LL temp=0;
for (int j=0;j<=i;++j)
{
temp+=dp[j]*dp[i-j-1]*C[i-1][j];
}
dp[i]=temp/2;
}
int T;
scanf("%d",&T);
while (T--)
{
int i,n;
scanf("%d%d",&i,&n);
printf("%d %I64d\n",i,n==1?1:dp[n]<<1);
}
}