【快捷指令案例】视频提取长图

前言

对于有视频转图片需求的小伙伴可以看过来,快捷指令同样有方式支持将视频转为图片,但对图片质量有高要求的可以忽略,快捷指令会对视频有压缩处理

设计思路

  • 支持分享视频提取长图和手动选取视频提取长图
  • 分享视频提取长图:从相册视频选择分享打开 视频提取长图快捷指令
  • 手动选取视频提取长图:手动执行快捷指令选取视频提取长图
  • 使用制作GIF工具制作GIF
  • 从GIF中获取帧
  • 以水平或者垂直方向拼接长图

实现

1.处理视频

  • 相册分享过来的视频通过【输入快捷指令的信息】获取
  • 手动执行快捷指令通过【选择照片】手动选取视频

在这里插入图片描述

选择照片】选取条件勾选视频,这样只会选择视频资源

在这里插入图片描述

2.获取视频帧

使用【制作GIF】将视频制作为GIF,通过【从图像中获取帧】获取GIF图片列表的帧图

在这里插入图片描述

3.拼接长图

提供垂直和水平方式拼接图片,通过【拼接图像】对图片列表进行拼接

在这里插入图片描述

4.保存图片

使用【存储到相簿】将图片存储到【最近项目

在这里插入图片描述

5.配置共享表单

MacOS上没有该步骤在手机端配置。

点击快捷指令右上角【】-> 【在共享表单中显示】-> 【共享表单类型】选择【图片】和【媒体

在这里插入图片描述

快捷指令口令

见原文:【快捷指令案例】视频提取长图

本文同步自微信公众号 “程序员小溪” ,这里只是同步,想看及时消息请移步我的公众号,不定时更新我的学习经验。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值