【Gemini】体验Gemini 2.0的正确姿势

Gemini 2.0简介

Gemini 2.0 是 Google 最新推出的多模态人工智能大模型,支持处理文本、图像、音频和视频等数据类型。相比 1.0 在多模态方面实现突破,不仅支持图像、视频和音频输入输出,而且可调用谷歌搜索、代码及第三方函数。它具备自主代理能力和增强的推理功能,已深度集成至Google应用中。

限制

需要科学上网

Gemini官网

官网地址:http://deepmind.com

在这里插入图片描述

体验方式

Gemini Chat

限制:需要科学上网、可以免费试用但模型较少

官网地址:https://gemini.google.com

进入Gemini Chat主页后选中使用Google 账号进行登录

在这里插入图片描述

登录成功后即可进入Gemini Chat页面

在这里插入图片描述

Gemini Chat可以 使用Gemini 1.5 Flash、试用Gemini 2.0 Flash Experimental 及 Gemini Advanced(可以免费试用一个月)

在这里插入图片描述

Gemini Chat 与目前市面上的AI Chat页面类似,可以在聊天页面进行 文本、语言、文件等聊天交互。

在这里插入图片描述

Google AI Studio

限制:需要科学上网、可以免费使用但免费版有额度限制:请求频率10次/分钟,每天最大请求数1500条/天

官网地址:https://aistudio.google.com

使用Google账号登录即可进入 Google AI Studio 首页

在这里插入图片描述

这里几乎包含了Google所有的模型:

  • gemini 1.5 系列
    • gemini-1.5-pro
    • gemini-1.5-flash
    • gemini-1.5-flash-8b
  • preview 系列
    • gemini-2.0-flash-exp
    • gemini-exp-1206
    • gemini-2.0-flash-thinking-exp-1219
    • gemini experimental 1121
    • learnlm-1.5-pro-experimental
  • gemma 系列
    • gemma-2-2b-it
    • gemma-2-9b-it
    • gemma-2-27b-it

这里还包括了Gemini相关智能应用:

  • 模型对话对比
  • 实时流,包括实时语音交互、视频交互、投屏交互
  • Gemini能力应用,包括空间理解、视频分析、地图探索
  • 提示词广场,包含大量优秀提示词

Gemini API

限制:可以免费试用,需要科学上网,但有调用频率和调用次数限制

官方文档:https://ai.google.dev/gemini-api/docs

在这里插入图片描述

API Key申请地址:https://aistudio.google.com/app/apikey

直接通过链接进入API Key申请页面或者在 Google AI Studio 顶部点击【Get API Key】按钮

在这里插入图片描述

友情提示

见原文:【Gemini】体验Gemini 2.0的正确姿势)

### 关于Gemini 2.0 Flash的技术文档下载、安装与使用教程 #### 文档获取途径 对于希望深入了解Gemini 2.0 Flash技术细节并获取官方指导文件的开发者而言,通常可以通过访问Google AI官方网站或GitHub仓库来找到最新的API文档和技术白皮书。此外,在一些情况下,特定版本如Flash可能通过参与早期测试计划获得专属资料[^1]。 #### 安装环境准备 为了顺利部署和运行Gemini 2.0 Flash模型,建议先确认本地开发环境中已正确配置Python解释器及相关依赖库。考虑到该模型对硬件性能有一定要求,拥有NVIDIA GPU支持将会显著提升训练效率。同时,确保网络连接稳定以便顺利完成必要的软件包更新操作[^4]。 #### 使用指南概览 一旦完成上述准备工作,则可通过如下方式快速启动Gemini 2.0 Flash的应用程序: -m venv gemini_env source ./gemini_env/bin/activate # Linux/MacOS 或者 .\gemini_env\Scripts\activate.bat # Windows ``` - **安装所需库**:依据官方提供的requirements.txt清单批量安装第三方模块 ```bash pip install -r requirements.txt ``` - **加载预训练模型**:利用`transformers`或其他兼容接口读取远程服务器上的权重参数 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "google/gemini-2.0-flash" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` - **构建交互界面**:借助Streamlit等可视化工具搭建简易的人机对话平台,方便用户输入查询语句并展示返回结果 ```python import streamlit as st user_input = st.text_area("请输入您的问题:") if st.button('提交'): inputs = tokenizer(user_input, return_tensors="pt") outputs = model.generate(**inputs) response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write(response_text) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值