题目大意:给一个整型数组nums,两个人依次从数组中的头或者尾拿一个数,判断是否player1拿到的总数大于或者等于player2~如果是就返回true,否则返回false~
在动态规划问题中,需要考虑的是,怎么把一个问题分解成递归的子问题,然后找到这个递归表达式
这道题的关键思路在于:
1、我们不需要去考虑玩家A拿到的数字总和究竟是多少,只要他大于玩家二即可。
2、这个问题应该是一个递归问题,我们如何定义动态数组去记录玩家A的状态,并且可以通过递归,根据上一状态的结果得到当前状态的结果。
所以,我们考虑
1、构建动态数组DP[n][n]
其中,n表示原数组长度,DP[i][j]代表的是,从nums[i]到nums[j],A玩家的总分减去B玩家总分,所得到的值
2、递归表达书:
DP[i][i] =nums[i]
DP[i][j] = max(nums[i]-DP[i+1][j], nums[j]-DP[i][j-1])
3、循环的设置
外层循环:因为当i-j=0时,其DP值已知,所以我们设置外层循环为ij链的长度k,从1到n-1
内层循环:对于长度为k的ij链,其初始点为: range(nums[0], nums[n-k])
代码:
def predictWinner(nums):
n = len(nums)
dp = [([0]*n) for i in range(n)]
for i in range(n):
dp[i][i] = nums[i]
for k in range(1,n):
for i in range(n-k):
j = i+k
dp[i][j] = max(nums[i]-dp[i+1][j],nums[j]-dp[i][j-1])
return dp[0][n-1] >=0
def main():
nums = [0,1,23,1,1]
result = predictWinner(nums)
print(result)
main()