数据结构与算法之美(一) 概述&复杂度

本文探讨了数据结构如数组、链表、二叉树等,以及算法如递归、排序和动态规划在处理数据时如何实现高效存储和操作。通过示例代码分析了时间复杂度,例如O(log_2(n))的循环操作。着重强调了在信息技术中优化空间和时间复杂度的重要性。
摘要由CSDN通过智能技术生成

一、定义

数据结构是一组数据的存储结构,常用的10个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie树。
算法是操作数据的一组方法,常用的10个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法。

数据结构和算法解决的是如何更省、更快地存储和处理数据的问题,也就是空间复杂度和时间复杂度都尽可能小。

二、复杂度

1、求下面代码的复杂度:

int i = 0;
while (i <= n) i = i * 2;

假设代码循环了k次后跳出,则2^k = n,所以k = log_2(n),时间复杂度为O(log_2(n))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值