图形判断:笔画数

笔画数

笔画数这一考点。在国考、省考以及事业单位、三支一扶等各种公务员考试当中,都作为一个重要考点的存在。但很多同学仍然对于这部分知识点不清晰,比如不知道如何数奇点,数不清奇点,或无法快速识别这类题型,以致于在考试的过程中花费过多时间或者丢分。今天就来给大家分享一下关于如何做好笔画数这类题目。

1.如何数清笔画数
笔画数的分类一共分为两大类,一类是汉字笔画,另一类是图形笔画。汉字笔画比较容易理解,就是直接数汉字是由几笔写成的,比如,“人”这一汉字由“撇—捺”两笔组成,因此就是两笔画;“王”这一汉字由“横—横—竖—横”四笔组成,因此就是四笔画。

那么图形笔画又分为两大类,一类是一笔画图形,另一类是多笔画图形。我们先来明确一下什么是一笔画的图形?笔尖落下后不抬笔、不回笔能够完成的图形,就是一笔画图形。它要满足两个条件,1.是一个连通图,也就是全部连在一起的图形;2.奇点数为0或2。那么这里又引入了一个新的概念,叫做奇点。什么是奇点呢?**从一点出发,引出奇数条线的点就是奇点。**满足这两个条件的即为一笔画图形。不是一笔画图形,就是多笔画图形了。我们可以用一个公式来计算多笔画图形的笔画数。在满足是一个连通图的前提下,奇点数÷2=最少笔画数。通过一道例题我们来数一数笔画数。

2.例题讲解

【例】从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定规律性:
在这里插入图片描述
题干当中所有图形都是连通图,符合前提,所以我们直接来看一下这些图形的奇点数和笔画数。1图、2图、4图中没有找到一个点,引出奇数条线,也就是说,没有奇点,奇点数为0,并且是都是连通图,所以是一笔画图形。3图、5图形中均有两个奇点,如下图所示:
在这里插入图片描述
题干中的图形均符合1.连通图;2.奇点数为0或2,因此均为一笔画图形,问号处也需要选择一个一笔画的图形。
答案中的所有图形也都是连通图,符合前提,选项的奇点如图所示:
在这里插入图片描述
选项中ACD中奇点数为4,且符合连通图这一前提,可以代入公式奇点数÷2=最少笔画数,得到笔画数均为2;只有B项符合1.连通图;2.奇点数为2,为一笔画图形,正确答案为B。

3.识别题型——特征图
想必大家已经会做笔画数的题目了,但考试的过程中如何识别这类题型呢?这里老师给大家整理了一些特征图,当题目当中出现了这些特征图,或者特征图的变形图的时候,大家可以优先考虑笔画数这一知识点。特征图如下:
在这里插入图片描述
想要做到快速识别笔画数题型,在记住笔画数相关知识点的前提下,大家还要通过大量做题实践,来提高自己对知识点的应用,对特征图变形图的识别。

内容概要:本文详细介绍了在COMSOL中使用不同参估计方法(如最小二乘法、遗传算法和贝叶斯推断)来跟踪输出浓度并与实验值进行误差比较的过程。首先,文章简述了扩散方程及其在COMSOL中的应用背景。接着,分别阐述了最小二乘法、遗传算法和贝叶斯推断的具体实现步骤,包括目标函的定义、参设置以及优化求解器的选择。随后,讨论了如何通过后处理功能提取计算得到的浓度据,并将其与实验值进行比较,以评估各方法的准确性。最后,强调了选择合适的方法对于提高模型精度的重要性,并分享了一些实践经验,如避免自动网格细化、使用动态权重调整等技巧。 适合人群:从事工程仿真、化学工程、材料科学等领域研究的技术人员,特别是那些需要利用COMSOL进行参估计和模型验证的研究者。 使用场景及目标:① 使用COMSOL进行复杂物理现象(如扩散、反应等)的值模拟;② 对比不同参估计方法的性能,选择最适合特定应用场景的方法;③ 提高模型预测精度,确保仿真结果与实验据的一致性。 其他说明:文中提供了大量实用的代码片段和技术细节,帮助读者更好地理解和应用这些方法。同时,作者还分享了许多实际操作中的经验和教训,提醒读者注意常见陷阱,如局部最优、参相关性和据预处理等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值