个人主页: 深情秋刀鱼@-CSDN博客
数据结构专栏:数据结构与算法
无论多高大的树,那也是从小到大,由根到叶,一点点成长起来的。俗话说“十年树木。百年树人”,可一棵大树又何止是十年这样容易。
目录
一、树
1.树的结构
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 有一个特殊的结点,称为根结点,根结点没有前驱结点除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继 因此,树是递归定义的。
在树形结构中,子树之间不能有任何的交集,否则就不是树形结构。
2.树的相关概念
- 结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6
- 叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等结点为叶结点
- 非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等结点为分支结点
- 双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
- 孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
- 兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
- 树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6
- 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
- 树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
- 堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
- 结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
- 子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
- 森林:由m(m>0)棵互不相交的树的集合称为森林;
3.树的实现
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,
既然保存值域,也要保存结点和结点之间
的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的
孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* firstChild1; // 第一个孩子结点
struct Node* pNextBrother; // 指向其下一个兄弟结点
DataType data; // 结点中的数据域
};
二、二叉树
1.二叉树的概念
二叉树是一种特殊的树,从上图可以看出在二叉树中每个节点的度最大不超过2,而且左右子树的顺序不能颠倒,所以二叉树是有序的。
- 二叉树的特殊形式
2.特殊的二叉树
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2的k次方-1,则它就是满二叉树。2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。 完全二叉树就是这样一种特殊的非满二叉树:除了最后一层外其他每一层都是填满的,并且最后一层的节点都尽可能地靠左排列。
3.二叉树的结构及实现
在本篇中着重讲述概念,具体的实现方法在下一节(堆)中详细讲述。 二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
- 顺序结构:
顺序结构存储就是使用 数组来存储,一般使用数组 只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。 二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。在实现的过程中我们要把数组想象为二叉树来存储。 链式存储:二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。
//当前章节仅作了解,后续会精讲
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* left; // 指向当前结点左孩子
struct BinTreeNode* right; // 指向当前结点右孩子
BTDataType data; // 当前结点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* parent; // 指向当前结点的双亲
struct BinTreeNode* left; // 指向当前结点左孩子
struct BinTreeNode* right; // 指向当前结点右孩子
BTDataType data; // 当前结点值域
}