子曰:“三人行,必有我师焉。择其善者而从之,其不善者而改之。”
本题给定甲、乙、丙三个人的能力值关系为:甲的能力值确定是 2 位正整数;把甲的能力值的 2 个数字调换位置就是乙的能力值;甲乙两人能力差是丙的能力值的 X 倍;乙的能力值是丙的 Y 倍。请你指出谁比你强应“从之”,谁比你弱应“改之”。
输入格式:
输入在一行中给出三个数,依次为:M(你自己的能力值)、X 和 Y。三个数字均为不超过 1000 的正整数。
输出格式:
在一行中首先输出甲的能力值,随后依次输出甲、乙、丙三人与你的关系:如果其比你强,输出 Cong;平等则输出 Ping;比你弱则输出 Gai。其间以 1 个空格分隔,行首尾不得有多余空格。
注意:如果解不唯一,则以甲的最大解为准进行判断;如果解不存在,则输出 No Solution。
输入样例 1:
48 3 7
输出样例 1:
48 Ping Cong Gai
输入样例 2:
48 11 6
输出样例 2:
No Solution
思路:以计算机的思维解决这个题。注意两点:1.从大到小遍历,以获得甲的最大解;2.涉及到浮点数比较大小的问题要修正误差。
#include <cstdio>
#include <cmath>
using namespace std;
const double eps = 1e-8;//误差修正
int m, x, y;
void print(double n) {
if (fabs(m - n) < eps) printf(" Ping");
else if (m - n < -eps) printf(" Cong");
else printf(" Gai");
}
int main() {
scanf("%d %d %d", &m, &x, &y);
//从99开始遍历以获得甲的最大解
for (int i = 99; i >= 10; i--) {//甲
int j = i % 10 * 10 + i / 10;//乙
double k = abs(j - i) * 1.0 / x;//丙
if (fabs(j - k * y) < eps) {
printf("%d", i);
print(i);
print(j);
print(k);
return 0;
}
}
printf("No Solution");
return 0;
}