【PAT B1088】 三人行

子曰:“三人行,必有我师焉。择其善者而从之,其不善者而改之。”

本题给定甲、乙、丙三个人的能力值关系为:甲的能力值确定是 2 位正整数;把甲的能力值的 2 个数字调换位置就是乙的能力值;甲乙两人能力差是丙的能力值的 X 倍;乙的能力值是丙的 Y 倍。请你指出谁比你强应“从之”,谁比你弱应“改之”。

输入格式:
输入在一行中给出三个数,依次为:M(你自己的能力值)、X 和 Y。三个数字均为不超过 1000 的正整数。

输出格式:
在一行中首先输出甲的能力值,随后依次输出甲、乙、丙三人与你的关系:如果其比你强,输出 Cong;平等则输出 Ping;比你弱则输出 Gai。其间以 1 个空格分隔,行首尾不得有多余空格。

注意:如果解不唯一,则以甲的最大解为准进行判断;如果解不存在,则输出 No Solution。

输入样例 1:

48 3 7

输出样例 1:

48 Ping Cong Gai

输入样例 2:

48 11 6

输出样例 2:

No Solution

思路:以计算机的思维解决这个题。注意两点:1.从大到小遍历,以获得甲的最大解;2.涉及到浮点数比较大小的问题要修正误差。

#include <cstdio>
#include <cmath>

using namespace std;

const double eps = 1e-8;//误差修正
int m, x, y;

void print(double n) {
    if (fabs(m - n) < eps) printf(" Ping");
    else if (m - n < -eps) printf(" Cong");
    else printf(" Gai");
}

int main() {
    scanf("%d %d %d", &m, &x, &y);
    //从99开始遍历以获得甲的最大解
    for (int i = 99; i >= 10; i--) {//甲
        int j = i % 10 * 10 + i / 10;//乙
        double k = abs(j - i) * 1.0 / x;//丙
        if (fabs(j - k * y) < eps) {
            printf("%d", i);
            print(i);
            print(j);
            print(k);
            return 0;
        }
    }
    printf("No Solution");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值