问题 D: 继续畅通工程

题目描述
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。

输入
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。

当N为0时输入结束。

输出
每个测试用例的输出占一行,输出全省畅通需要的最低成本。

样例输入

4
1 2 1 1
1 3 6 0
1 4 2 1
2 3 3 0
2 4 5 0
3 4 4 0
3
1 2 1 1
2 3 2 1
1 3 1 0
0

样例输出

3
0

思路:Kruskal算法。修建状态为1相当于两条边对应边权为0。

#include <cstdio>
#include <algorithm>
using namespace std;

const int MAXV = 110;
const int MAXE = 10010;
//边集定义部分
struct edge {
    int u, v;
    int cost;
} E[MAXE];
bool cmp(edge a, edge b) {
    return a.cost < b.cost;
}
//并查集部分
int father[MAXV];
int findFather(int x) {
    int a = x;
    while (x != father[x]) {
        x = father[x];
    }
    //路径压缩(可不写)
    while (a != father[a]) {
        int z = a;
        a = father[a];
        father[z] = x;
    }
    return x;
}

int kruskal(int n, int m) { // n个顶点,m条边
    int ans = 0, Num_Edge = 0;
    for (int i = 1; i <= n; i++) { //编号为[1,n]
        father[i] = i;
    }
    sort(E, E + m, cmp);
    for (int i = 0; i < m; i++) {
        int fU = findFather(E[i].u);
        int fV = findFather(E[i].v);
        if (fU != fV) {
            father[fU] = fV;
            ans += E[i].cost;
            Num_Edge++;
            if (Num_Edge == n - 1) break;
        }
    }
    if (Num_Edge != n - 1) {
        return -1;
    } else {
        return ans;
    }
}

int main() {
    int N, len, key;
    while (scanf("%d", &N), N != 0) {
        for (int i = 0; i < N * (N - 1) / 2; i++) {
            scanf("%d%d%d%d", &E[i].u, &E[i].v, &E[i].cost, &key);
            if (key == 1) E[i].cost = 0;
        }
        len = kruskal(N, N * (N - 1) / 2);
        printf("%d\n", len);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值