自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Java && AI Agent工程师

关注分享Java后端高级开发成功转型AI Agent全栈工程师实战经验,每周更新技术干货。

  • 博客(166)
  • 收藏
  • 关注

原创 【AI大模型开发】-AI 大模型原理深度解析与 API 实战(建议收藏!!!)

摘要 本文系统解析AI大模型原理与开发实践,分为三部分:1)AI发展历程,从规则系统演进到大模型时代;2)AI技术分类,对比判别式AI(分析判断)与生成式AI(内容创作)的特点与应用场景;3)大型语言模型(LLM)的核心能力,包括语言理解、知识推理等"超能力"。文章通过生活化类比(如将AI比作游戏角色升级)和代码示例,帮助读者理解技术概念,为后续API实战开发奠定理论基础。内容涵盖大模型关键概念如Token处理、温度参数调节等,并预告实际开发案例,是一份全面的大模型技术入门指南。(149

2026-02-07 08:45:00 587 8

原创 【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)

精准雷达:RAG召回策略解析 本文深入探讨检索增强生成(RAG)系统中的核心召回策略。通过四项关键技术实现精准信息定位:1) Rerank模型对初步结果二次排序,提升相关性;2) 双向改写(Query2Doc/Doc2Query)解决查询与文档语义鸿沟;3) Small-to-Big索引兼顾检索效率与长文处理;4) 拓展方案包括HyDE的假设文档生成、多向量检索和基于图的关联挖掘。文章结合生活案例和示例代码,展示了如何构建高效"信息捕手",并指出未来发展方向。这些策略共同构成RAG系统的

2026-02-05 08:45:00 2989 93

原创 【Python 教程15】-Python和Web

本文介绍了三种Web数据抓取方法:正则表达式、HTML解析和Beautiful Soup库。正则表达式适合快速匹配简单文本模式,但面对复杂HTML结构时效率较低;HTML解析将网页转换为可操作的数据结构,通过Python标准库的HTMLParser实现;Beautiful Soup则是处理不规范HTML的神器,能轻松定位和提取元素。文章通过抓取Python官网招聘信息的示例代码,对比了三种方法的适用场景和使用技巧,为开发者选择合适的数据抓取工具提供了实用指导。

2026-02-08 02:52:26 165 9

原创 【Spring全家桶】-一文弄懂Spring Cloud Gateway

Spring Cloud Gateway作为微服务架构的核心组件,扮演着智能流量调度中心的角色。本文从基础概念到高级应用,系统讲解了Gateway的核心功能:作为统一入口实现请求路由(包含Java配置示例);通过动态路由实现灵活的流量调度;利用限流保护确保系统稳定性;借助熔断机制构建高可用系统;使用全局过滤器处理横切关注点。文章还探讨了API聚合、WebSocket支持等高级功能,通过生活案例和Mermaid流程图帮助理解,为开发者提供了从入门到实践的完整指南。

2026-02-07 16:17:53 557 4

原创 【Python 教程14】- 网络编程

本文介绍了Python网络编程的核心内容,主要包括标准库中的网络模块和SocketServer框架。首先讲解了socket模块的基础用法,包括创建服务器和客户端套接字、数据传输方法send/recv,以及简单的服务器/客户端实现示例。其次介绍了urllib和urllib2模块,涵盖打开远程文件、下载文件等功能。最后概述了SocketServer框架及其派生类,说明如何通过重写handle方法实现自定义请求处理。文章还列举了Python中其他常用的网络相关模块,为开发者提供了全面的网络编程参考。

2026-02-06 14:37:21 365 7

原创 【RAG技术】- RAG系统调优手段之GraphRAG(全局视野)

GraphRAG:让AI拥有全局视角的检索增强技术 传统RAG技术在处理宏观问题时存在局限性,而GraphRAG通过构建知识图谱和社区摘要,为AI提供了"上帝视角"。GraphRAG的工作流程包括文本切片、实体关系提取、Leiden算法聚类和层级摘要生成四个核心步骤,将非结构化数据转化为结构化的知识网络。相比基线RAG只能提供局部片段,GraphRAG能理解数据间的复杂关联,适用于需要全局分析的应用场景。文章还介绍了动态图谱更新、多模态实体链接和混合检索优化三种进阶方案,并提供了Pyth

2026-02-06 08:45:00 1235 5

原创 【Python教程13】-数据库支持

| | | | callproc(name[, params]) | 使用指定的参数调用指定的数据库过程(可选) | | | close() | 关闭游标。关闭后游标不可用 | | | execute(oper[, params]) | 执行一个 SQL 操作(可能使用参数) | | | executemany(oper, pseq) | 执行指定的 SQL 操作多次,每次都对应序列中的一个参数 | | | fetchone() | 以序列的方式取回查询结果中的下一行;如果没有更多的行,则返回 None |

2026-02-05 16:04:10 596 1

原创 【RAG技术】- RAG系统调优手段之知识库处理(纯干货,建议收藏!!!)

摘要:知识库处理——RAG系统的核心基础 本文系统阐述了知识库处理在RAG系统中的关键作用,将其比作图书馆的藏书管理。核心内容包括: 知识库处理:作为RAG系统的基础,影响知识获取效率与结果质量 四大应用场景: 问题生成与检索优化:通过多样化问题提升检索准确率 对话知识沉淀:从用户对话中提取有价值知识 健康度检查:评估完整性、时效性和一致性 版本管理:确保知识库迭代质量 三大拓展方案:多模态处理、跨语言支持和实时更新机制 通过类比图书馆管理,文章生动说明了优化知识库处理对提升RAG系统性能的重要性,为构建高

2026-02-04 19:32:01 651 2

原创 【RAG技术】-NativeRAG从入门到进阶(小白也能看懂)

本文介绍了NativeRAG检索增强生成系统的核心架构与功能,包含文档加载、文本分割、向量化存储、检索匹配和响应生成五大模块。重点阐述了三大拓展方案:多模态检索系统(支持文本/图片/音频处理)、动态知识库更新(增量学习和实时同步)、分布式检索集群(负载均衡和容错机制)。最后提供了Python实战示例,展示从环境搭建到文档检索的完整流程。文章适合希望了解NativeRAG基础原理及实际应用的开发者阅读,通过核心功能解析与扩展方案介绍,帮助读者快速掌握这一技术。

2026-02-04 09:30:00 1303 24

原创 【Python教程12】-图形用户界面

本文介绍了Python中使用Tkinter创建图形用户界面(GUI)的基础知识。主要内容包括:1) Tkinter作为Python标准GUI工具包的基本介绍;2) 创建简单GUI窗口和按钮的方法,包括控件布局(pack管理器)和事件处理(command属性);3) 不同窗口管理方式(Toplevel类)和多种布局管理器(pack/grid/place)的对比;4) 通用事件处理机制(bind方法)的使用示例。文章通过代码示例演示了如何创建按钮、标签、多窗口等基本GUI元素,并说明了如何为控件添加交互功能。

2026-02-03 08:45:00 1047 10

原创 【AI编程工具】-手把手带你体验 Trae AI的Skills(对小白非常友好)

Trae AI技能创建指南:自动保存提示词功能 本文详细介绍了如何在Trae AI中创建自动保存提示词的技能。主要内容包括: 技能概念:Trae AI技能是扩展AI功能的核心方式,可实现自动化任务和工作流程定制 自动保存的价值:解决知识丢失、重复输入等问题,实现团队知识共享和效率提升 创建步骤: 建立技能文件结构(SKILL.md、main.py、requirements.txt) 编写技能描述文件 实现核心保存功能的Python代码 部署与测试:压缩文件上传到Trae AI并配置参数 进阶优化:提供改进建

2026-02-02 09:15:00 1470 29

原创 【Python教程11】-文件

本文介绍了Python文件操作的基本方法。主要内容包括:1) 使用open()函数打开文件,讲解不同文件模式(r/w/x/a等)的作用;2) 文件读写方法,包括write()、read()、readline()等;3) 随机存取操作,使用seek()和tell()方法定位文件指针;4) 文件关闭的三种方式:close()、try/finally和with语句;5) 通过管道重定向输出的示例。文章提供了多个代码实例,演示如何创建、写入、读取和定位文件内容,并特别强调了使用with语句自动管理文件资源的最佳实践

2026-02-02 08:30:00 779 5

原创 【Python教程10】-开箱即用

Python标准库"开箱即用"特性解析 本文介绍了Python"开箱即用"(batteries included)理念及其标准库使用要点: 模块基础 通过import导入模块 模块首次导入时执行代码,后续导入不重复执行 模块主要用于定义函数、类和变量 模块实践技巧 使用__name__区分模块是被导入还是直接运行 推荐将测试代码放入if name == 'main'条件中 可通过sys.path查看和修改模块搜索路径 包管理 包是包含__init__.py的目录 支持

2026-02-01 08:45:00 694 16

原创 【AI应用开发工程师】-开发者同时用AI跑四个编程项目,效率提升四倍,白发也多了四倍

AI效率悖论:智能工具为何让我们更疲惫? 核心矛盾:AI工具在提升效率的同时,增加了认知负担,导致"单位时间产出增加但精力消耗翻倍"的现象。这种现象源于: 决策疲劳(更多选择需判断) 质量控制成本(AI产出需人工审核) 学习曲线叠加(工具迭代过快) 注意力碎片化(多任务并行) 三大破局思路: 技术栈精简:遵循80/20法则,建立"最小可行工具集" 认知负载管理:通过任务批处理、信息标准化等方法优化大脑"内存" 效益导向评估:像投资人一样量化计算技术

2026-01-31 18:59:32 631 6

原创 【RAG技术】- 趣味解读RAG 高效召回秘籍之索引扩展

本文介绍了RAG(检索增强生成)系统中索引扩展的核心技术与实践方法,旨在解决知识检索中的"漏检"问题。文章首先阐述了索引扩展的重要性,指出单一检索方式(如仅关键词或仅向量检索)的局限性。随后详细讲解了3种核心索引扩展技术:离散索引扩展(关键词+实体)、连续索引扩展(多向量模型)和混合索引召回(BM25+向量),通过生活案例和通俗解释帮助理解。 进阶部分提出了3种实战拓展方案:实体链接增强、向量模型与知识图谱融合、动态索引更新机制,进一步提升召回准确率。文章还提供了混合索引的参数调优指南,

2026-01-31 09:30:00 1732 85

原创 【Python教程09】-魔法方法、特性和迭代器

本文介绍了Python中的魔法方法、特性和迭代器,重点讲解了构造函数和元素访问协议。主要内容包括:构造函数__init__的用法及参数设置,析构函数__del__的使用限制;继承中方法重写的机制,特别是构造函数重写时需要调用超类构造函数的两种方法(未关联方法和super函数);以及实现序列和映射协议的基本方法。通过Bird和SongBird类的示例,展示了如何正确初始化继承对象,并说明了super函数的优势。文章还提到Python协议的多态特性,强调行为而非类型的重要性。

2026-01-31 09:15:00 579 4

原创 【Python教程08】-异常

Python异常处理机制简介 Python使用异常对象表示程序运行时的错误状态,未处理的异常会导致程序终止。通过raise语句可以主动引发异常,包括内置异常类(如ZeroDivisionError、ValueError等)或自定义异常类(需继承Exception)。使用try/except结构可以捕获和处理异常,支持多个except子句处理不同类型的异常。异常处理时可以使用不带参数的raise重新抛出当前异常,或通过raise...from...指定新的异常上下文。合理使用异常处理机制能提高程序的健壮性,使

2026-01-30 10:00:00 598 6

原创 【Git版本控制】-趣味解说Git核心知识

本文全面介绍Git版本控制的核心知识与高级技巧,内容涵盖分支策略选择(功能分支/Gitflow/Forking/主干开发)、合并与变基的区别、冲突解决四步法,以及Stash、Cherry-pick等高级操作。特别针对团队协作场景,提供大文件处理、代码审查流程等实用建议,并附有Git面试高频问题解答。通过生活化比喻(如"merge是合照,rebase是P图")让复杂概念更易懂,适合从Git新手到进阶开发者阅读学习,帮助团队建立高效的版本控制工作流。

2026-01-29 19:24:42 1509 8

原创 【Python教程07】-再谈抽象

摘要 本文深入探讨了Python面向对象编程的三大核心概念:多态、封装和继承。多态允许对不同类型对象执行相同操作而无需知道其具体类型;封装通过隐藏对象内部细节简化使用;继承则支持基于现有类创建新类。文章详细介绍了类的定义、属性方法、命名空间等概念,并演示了如何创建自定义类、使用私有属性和指定超类。通过实际代码示例,展示了这些概念的具体应用,如SPAMFilter继承Filter类的实现。全文提供了面向对象编程的实用指南,帮助读者掌握Python中类的核心用法。

2026-01-29 09:30:00 854 16

原创 【Python踩坑全纪录】-Windows 系统如何彻底卸载所有 pip install 安装的包?

本文介绍了在 Windows 系统上彻底卸载 pip 安装包的多种方法。最推荐的是使用 pip freeze 和 pip uninstall 组合命令,首先生成包列表文件再批量卸载。此外还提供了 Python 脚本、PowerShell 脚本、删除 site-packages 文件夹以及虚拟环境清理等方案。文章对比了各方法的优缺点,并给出了常见问题的解决方案,建议操作前先备份环境。对于需要完全重置的情况,提供了包含备份、卸载和重建的完整清理流程。

2026-01-28 20:46:32 540 7

原创 【Python小知识】-pip install xxx 命令安装的 ,在电脑的哪个盘?

本文详细介绍了Python pip安装路径的管理方法: 查看路径: 使用pip show查看单个包路径 通过python -m site查看基础路径 总结不同安装方式(系统/用户/虚拟环境)的默认路径 修改路径的4种方法: 修改site.py配置文件(永久生效) 使用命令行参数(临时指定) 创建虚拟环境(推荐最佳实践) 设置环境变量配置 最佳实践建议: 优先使用虚拟环境 谨慎修改全局路径 保持环境一致性 文档化配置 文章提供了从基础查询到高级配置的完整解决方案,特别针对C盘空间不足问题给出了实用建议,适合P

2026-01-28 20:29:46 950 1

原创 【AI大模型开发】-大模型名称上的“B”字母到底是啥东西?

本文揭秘了大模型参数规模中的“B”含义(代表Billion/十亿),对比了2B到32B不同规模模型的特点和适用场景。通过大脑容量、公司规模等生活化比喻,解释了参数规模与模型能力的关系。文章提供选型指南:个人学习推荐7B-8B,企业PoC建议7B-30B,移动端适用2B-3B,研究需求选择30B+。最后指出参数量并非唯一指标,训练质量和架构同样重要,并调侃了模型命名引发的误解。

2026-01-28 18:27:11 373 4

原创 【Python小知识】-Python Flask 框架入门教程

本文介绍了Python轻量级Web框架Flask的基础使用方法。首先概述Flask的特点和优势,然后详细讲解项目初始化步骤,包括创建目录、安装Flask和编写入口文件。接着演示如何构建基础应用,配置路由与动态参数传递,以及使用模板渲染HTML页面。最后简要提及静态文件管理和数据库集成等扩展功能。通过这篇教程,读者可以快速掌握Flask的核心功能,为开发Web应用打下基础。

2026-01-28 18:03:14 479 1

原创 【Python教程06】-抽象

Python函数与参数使用指南 本文介绍了Python中函数的定义与参数使用技巧。主要内容包括: 函数定义:使用def语句创建函数,callable()判断对象是否可调用,return返回值,以及通过__doc__属性添加文档字符串。 参数处理: 位置参数和关键字参数的使用 默认参数值的设置方法 参数传递机制(值传递与引用传递的区别) 如何避免意外修改传入的可变对象(使用切片创建副本) 高级参数特性: 收集参数的用法(*params将参数打包为元组) 参数解包功能 实际应用示例: 斐波那契数列生成函数 姓名

2026-01-28 08:45:00 563 10

原创 【AI大模型开发】-RAG 高级技术与调优(秒懂版)

摘要:RAG高级技术与调优是对基础RAG系统的深度优化,通过知识库处理、GraphRAG全局检索、智能决策和多模式召回等技术提升系统性能。专业层面解决了检索不准确、知识利用不充分等问题;通俗理解是让AI助手变得更聪明、更高效。应用场景包括知识库优化、对话沉淀和健康度检查等,未来发展方向涵盖智能知识处理、强化图谱推理和精准检索技术。该技术通过多维度优化显著提升问答系统的准确性和响应速度,适用于客服、知识管理等多样化场景。

2026-01-27 21:16:34 966 3

原创 【AI应用开发工程师】-AI写代码总翻车?一文帮你解决(附实战案例)

摘要:本文介绍了"需求对齐Skill"这一AI交互模式,通过"只理解不解决、只复述不扩展、只提问不猜测"三大原则,采用需求复述、意图识别、约束确认三步流程,帮助开发者与AI精准对齐需求。文章以视频提示词修改功能为例,展示了该模式如何减少80%返工,并提供了具体应用方法。这种"先理解后动手"的沟通方式,能有效避免AI生成代码跑偏的问题。

2026-01-27 16:17:29 2660 74

原创 【AI应用开发工程师】-DevAGI平台大模型介绍

本文介绍了常用AI模型的使用方法,重点列出了OpenAI主流模型及其特点,包括GPT-4 Turbo、GPT-3.5 Turbo等不同版本在上下文大小和性能上的差异。同时还提供了Claude、Gemini和Mistral等其他平台的模型选项,为用户选择适合的AI模型提供参考。文章包含模型对比表格和平台链接,帮助用户快速了解各模型特性。

2026-01-27 09:15:00 349 3

原创 【AI应用开发工程师】-RAG知识切片(chunk)策略解读

摘要: 本文详细介绍了RAG(检索增强生成)中的五种知识切片策略:1)固定长度切片(按字符数切分);2)句子边界切片(保持自然语义);3)LLM语义切片(智能理解上下文);4)层次切片(基于文档结构);5)滑动窗口切片(重叠确保连贯性)。通过比喻(如切蛋糕、整理书架)通俗解释每种策略的特点,并提供对比表格和场景选择建议(如技术文档推荐层次切片,高质量问答适用LLM语义切片)。切片策略直接影响AI的知识检索精度,合理选择能显著提升问答效果。

2026-01-26 20:50:20 573 2

原创 【AI应用开发工程师】-阿里百炼模型平台使用教程(保姆级)

摘要:阿里云百炼平台是一个大模型服务与开发平台,用户需注册并获取API key来调用阿里大模型。操作步骤包括:1)登录百炼平台官网;2)完成实名认证;3)在业务空间创建API key;4)查看各模型的免费额度信息。平台提供不同模型的免费使用额度,用户可在模型广场查看具体详情。

2026-01-26 18:08:32 774 11

原创 【Python教程05】-条件、循环及其他语句

Python 条件、循环及其他语句摘要 本文介绍了Python中条件语句、循环及其他重要语句的使用方法。主要内容包括: print和import:print函数的多个参数打印、自定义分隔符和结束字符串;import时使用as重命名模块或函数 赋值技巧:序列解包(并行赋值)、链式赋值和增强赋值(如+=) 条件语句:if-elif-else结构、布尔值判断、比较运算符(==、is、in)和布尔运算符(and/or/not) 代码块:通过缩进创建代码块,使用冒号(:)标识代码块开始 断言:使用assert进行条件

2026-01-26 15:03:14 1008 2

原创 【Java教程】- Java设计模式核心知识解读

本文以通俗易懂的方式介绍Java设计模式,将23种设计模式分为创建型、结构型和行为型三大类。文章首先重点讲解单例模式,用"公司CEO"作比喻,详细比较6种实现方式的优缺点,并提供代码示例。随后介绍工厂模式,将其比作"对象代工厂",通过产品生产案例说明其应用场景,并与简单工厂进行对比。最后讲解抽象工厂模式,用"装修风格"类比产品族概念,展示如何创建风格统一的产品系列。全文采用生活化比喻和代码示例相结合的方式,帮助读者轻松理解设计模式的核心思想与应用场

2026-01-26 09:00:00 578

原创 【AI大模型开发】-NotebookLM 使用

NotebookLM 是 Google 开发的一款基于检索增强生成(RAG)技术的 AI 工具,它允许用户上传和分析文档,组织信息、总结关键事实,回答用户的问题,并制作成播客。NotebookLM 采用"基于来源"的方法,仅从上传材料的范围内检索信息,所有提取的内容都会自动生成引用,简化了事实核查过程。NotebookLM 是一款强大的 AI 工具,它通过基于来源的方法,为用户提供了准确、可靠的信息服务。

2026-01-25 09:00:00 1142 8

原创 【AI应用开发工程师】-带你弄懂Skills如何省 Token?

摘要: Skill技术通过"懒加载"机制优化AI编程的Token消耗,采用三层架构(元数据/指令/资源)实现按需加载。与传统Prompt一次性加载所有规则不同,Skill仅在任务匹配时激活相关模块,实测可节省90%以上Token。类比智能点餐系统,Metadata层快速筛选技能,触发后才加载具体指令和资源,既提升效率又降低成本。该设计类似编程中的懒加载模式,适合多技能复杂场景,让AI像"智能管家"般精准响应。文末邀请读者分享省Token经验并设置互动奖励。

2026-01-24 12:38:21 1178 7

原创 【Spring全家桶】-一文弄懂Spring框架

Spring不是一天学会的,但每天学一点,终将成为Spring大师!

2026-01-24 12:33:15 958 1

原创 【AI大模型开发】-RAG多模态详解(通俗易懂)

RAG多模态数据处理技术详解:融合文本、图像、音频、视频等多种数据类型的智能处理系统。通过统一向量空间实现跨模态检索与语义对齐,提供更丰富的交互体验。文章从专业原理到生活案例,系统介绍了该技术的核心架构(如Gemini模型)、应用场景(如智能对账、多媒体汇报)及未来发展方向。关键技术包括多模态嵌入、统一向量表示和跨模态检索,解决了传统系统信息类型单一、语义理解有限等问题。

2026-01-23 18:50:19 718 6

原创 【Java教程】- 并发编程核心知识解读

本文是一篇幽默风趣的Java并发编程指南,通过生活化比喻讲解核心概念。文章采用图标目录导航,涵盖volatile(公告栏通知)、synchronized(单人间厕所)、CAS(换货小哥)、Lock(手动挡汽车)、线程池(外包公司)等主题。每个知识点配有专业解释、通俗比喻、代码示例和可视化图表,并穿插面试重点提示。文章风格轻松活泼,将复杂技术概念转化为日常场景,帮助读者直观理解并发编程原理与实践技巧。

2026-01-23 17:41:31 903

原创 【AI编程】- Skill 加载原理(秒懂版)

摘要:Coze工作流并非传统"流水线",而是AI的智能决策中枢。它通过条件判断、循环和分支节点实现非线性决策,解决"遇到不同情况该如何处理"的难题。工作流包含三大核心构件:逻辑判断节点、循环节点、变量与上下文。相比固定步骤的编排,工作流更像拥有判断力的AI厨师,能根据实际情况动态调整。在电商客服等复杂场景中,工作流可并行处理多个意图并整合结果。设计时需避免三大误区:过度集中判断、忽视错误处理、变量管理混乱。当场景需要复杂判断、重复操作或对接多个API时,工作流是最佳选

2026-01-23 10:30:00 646 1

原创 【AI大模型开发】-RAG系统Query改写以及支持联网搜索实战(附源码)

Query 改写技术是 RAG 系统中的重要组成部分,本项目实现了多种类型的查询改写功能,为智能问答系统提供了有力支持。通过自动识别和改写用户查询,系统可以更准确地理解用户意图,提高检索质量和回答准确性。结合多模态信息,处理包含图片、语音的查询引入用户个性化信息,提供定制化的查询改写与知识图谱结合,提高查询理解的深度和准确性开发更多领域特定的查询改写策略。

2026-01-23 03:08:11 746 1

原创 【Python小知识】-self是什么?

Python类中的self是实例对象的"代言人",代表当前操作的具体对象。在__init__方法中,self用于绑定实例属性,比如self.model = model将参数值赋给实例。self的关键作用是区分不同实例的属性,确保方法调用时操作的是当前实例自己的数据。例如创建多个QueryRewriter实例时,每个实例通过self维护独立的模型属性。通俗来说,self就像翻译器工厂中每个翻译器的"身份证",确保工作时使用自己的配置而非其他实例的。Python会自动将实

2026-01-23 01:49:36 289

原创 【AI大模型开发】-创建RAG问答实战(LangChain+DeepSeek+Faiss)

摘要:ChatPDF-Faiss是一个基于FAISS向量数据库和阿里云DashScope API的PDF智能问答系统。该系统通过PyPDF2提取PDF文本内容,使用递归字符分割器将文本分块,并利用DashScope Embeddings生成文本嵌入。FAISS用于高效检索相似文本,结合Tongyi大语言模型生成智能回答,同时显示回答来源页码确保可追溯性。项目支持向量数据库的本地保存与加载,便于重复使用。安装简单,只需配置API密钥即可快速部署,适用于从PDF文档中提取信息的智能问答场景。

2026-01-22 17:41:45 1685 13

【AI大模型开发】-RAG系统Query改写以及支持联网搜索实战(附源码)

Query 改写技术是 RAG(Retrieval-Augmented Generation)系统中的重要组成部分,用于优化用户查询,提高检索质量和准确性。本项目实现了多种类型的查询改写功能,包括上下文依赖型、对比型、模糊指代型、多意图型和反问型查询的识别与改写,同时支持联网搜索需求的识别和搜索策略生成。

2026-01-23

【AI大模型开发】-创建RAG问答实战(LangChain+DeepSeek+Faiss)

ChatPDF-Faiss 是一个基于 FAISS 向量数据库的 PDF 文档智能问答系统,能够从 PDF 文档中提取信息并回答用户的问题。该系统利用了阿里云 DashScope API 提供的文本嵌入和大语言模型能力,实现了对 PDF 文档的高效检索和智能问答

2026-01-22

【AI大模型开发】-基于向量数据库的PDF智能问答系统(实战)

ChatPDF-Faiss是一个基于向量数据库技术的PDF智能问答系统,它能够将PDF文档内容转换为向量表示并存储在FAISS向量数据库中,用户可以通过自然语言提问获取文档中相关信息的精确回答。

2026-01-17

【AI大模型开发】-基于FAISS的语义搜索系统(实战)

本项目展示了如何使用**阿里云百炼Embedding API**生成文本向量,并结合**FAISS**(Facebook AI Similarity Search)构建一个简单但功能完整的语义搜索系统。

2026-01-17

【AI大模型开发】-基于 Word2Vec 的中文古典小说词向量分析实战

本项目基于 Gensim 库实现了中文古典小说的 Word Embedding 分析,通过 Word2Vec 算法将文本中的词语转换为向量表示,进而实现词语相似度计算和类比推理等功能。项目包含了《西游记》和《三国演义》两个经典中文文本的分析案例,适合自然语言处理初学者学习和实践。

2026-01-17

10-神经网络基础与Tensorflow实战.7z

神经网络基础与Tensorflow实战相关文档何代码

2025-12-30

资金流入流出预测比赛源代码以及答案

# 资金流入流出预测比赛 源代码及答案资源描述 ## 一、资源核心概述 你需要的这份资源是针对**资金流入流出预测竞赛**打造的完整技术包,包含可直接运行、可二次优化的竞赛源代码,以及对应竞赛任务的验证答案与结果解析,覆盖从数据预处理到模型部署的全流程,适用于竞赛参赛备赛、金融时序预测学习、相关技术研究等场景。 ## 二、资源核心构成 ### (一) 竞赛源代码(完整可落地) 1. **目录结构清晰**:按功能模块划分文件夹,包含`data/`(数据存放目录)、`src/`(核心代码目录)、`model/`(模型保存目录)、`output/`(预测结果输出目录)、`requirements.txt`(环境依赖清单),便于快速上手与修改。 2. **核心功能模块全覆盖** - 数据预处理模块:实现资金流水数据清洗(缺失值填充、异常值剔除)、特征工程(时序特征提取:日/周/月资金波动、流入流出差值;统计特征:均值、方差、分位数;关联特征:资金来源/去向关联特征构造),适配金融资金数据的时序特性与非结构化特点。 - 模型训练模块:集成多种竞赛高分模型,包括传统机器学习模型(XGBoost/LightGBM/CatBoost,针对小样本场景优化参数)、深度学习模型(LSTM/GRU/TCN,适配资金时序序列的长期依赖捕捉),支持单模型训练与模型融合(Stacking/Bagging),内置交叉验证(K-Fold)逻辑,提升预测稳定性。 - 模型推理模块:封装预测接口,支持批量数据预测与单条数据实时预测,自动加载训练好的最优模型,输出标准化的资金流入/流出金额、变动趋势、置信区间等结果。 - 结果可视化模块:生成资金流入流出趋势对比图、模型预测误差热力图、特征重要性排序图,直观呈现预测效果与数据规律,便于竞赛汇报与分析总结。

2025-12-27

【AI编程工具】-解决Windows安装OpenSSH.Client提示「无法下载源文件」问题(适配Trae SSH连接)

window版OpenSSH离线安装包

2025-12-24

二手车价格预测:新手导航手册Car-Price-Prediction-Full-Stack.pdf

# 二手车价格预测:新手导航手册—你的数据科学实战宝典! 你是否想掌握二手车价格预测的核心技能,却苦于没有实战指导?《二手车价格预测:新手导航手册》为你量身打造从数据探索到模型融合的完整项目实践指南!^[1]^ **项目亮点**: - **真实数据挑战**:处理50,000辆二手车复杂数据,挖掘价值信息。^[2]^ - **三模型强强联合**:CatBoost、LightGBM与XGBoost加权融合,MAE低至470.39,性能卓越。^[3]^ - **全流程拆解**:从数据探索(EDA)、数据预处理、特征工程到多模型训练、模型融合,每一步都详细解析。^[4]^ - **AI辅助实现**:提供AI提示词,助你快速复现流程,提升效率。^[5]^ - **防泄露原则**:严格遵守数据处理的最佳实践,确保模型可靠性。^[6]^ **你将获得**: - 实战经验:亲手操作一个完整的数据科学项目,积累宝贵经验。^[7]^ - 技能提升:掌握特征工程、模型训练与融合的高级技巧。^[8]^ - 工具资源:核心脚本与数据文件一应俱全,即下即用。^[9]^ 不论你是数据科学新手,还是寻求突破的进阶者,这本手册都是你不可多得的实战宝典!立即下载,开启你的二手车价格预测之旅!

2025-12-21

AutoDL-SSH-Tools.zip

AutoDL window端访问云服务的工具

2025-12-11

DirectX Repair4.4(64bit).zip

DirectX Repair 4.4(64bit) - 系统运行库修复神器 软件简介 DirectX Repair 4.4(64bit)是一款专业系统级修复工具,专注于自动修复和安装Windows系统常用的DirectX和C++运行库。本版本为增强版,不仅支持DirectX修复,还全面支持C++运行库的修复,是解决游戏和软件运行异常的必备工具。 核心功能 一键智能修复:只需点击"检测并修复",即可自动完成检测、下载、修复和注册全过程,无需复杂设置 全面兼容系统:完美支持Windows 7/8/10/11及Vista,自动识别32位/64位系统环境 C++组件自动修复:除DirectX外,还支持C++ 2010/2012/2015-2022等运行库的修复 异步多线程技术:检测、下载、修复任务并行执行,互不干扰,大幅提升修复效率 双模式界面:提供"正常模式"(功能全面)和"简约模式"(高效快速)两种界面选择 适用场景 游戏运行时提示"缺少DirectX组件"或"0xc000007b"错误 软件运行时出现"找不到c++运行库"的报错 系统DLL文件损坏导致程序无法启动 需要快速修复系统运行库异常的情况 特色优势 绿色免安装:无需安装,解压后直接运行,即开即用 智能日志记录:自动记录每次修复过程,便于问题追踪 高级筛选功能:可自定义选择需修复的文件,精准高效 C++自动更新:在修复DirectX的同时,自动检测并更新C++组件 体积优化:较上一版体积减小约5%,运行更加轻便 使用说明 1. 下载解压后,双击运行DirectX Repair主程序 2. 点击"检测并修复"按钮,等待自动完成修复 3. 修复完成后,建议重启系统使更改生效 4. 如问题仍未解决,可尝试在"选项"中启用"同时更新C++"功能

2025-12-10

WizTree-v4.27-x64-x86.exe

C盘爆红清理神器资料详细描述 内容概要 该工具专为解决C盘空间不足问题设计,可智能识别并清理系统缓存、临时文件、日志残留等无用数据,快速释放C盘存储空间,辅助提升系统运行流畅度。 适用人群 适合C盘空间告急、希望便捷清理垃圾文件的电脑用户,尤其是对电脑操作不熟悉、担心手动误删系统文件的普通使用者。 使用场景及目标 当C盘因长期积累的冗余文件导致空间不足、电脑运行缓慢时,使用该工具可快速完成无用文件清理,目标是高效回收空间、改善系统运行效率。 其他说明 工具采用安全策略,仅针对非系统核心的垃圾文件操作,规避误删风险;支持一键智能清理与自定义选择清理项,满足不同精细化需求;可定期清理维护,长期保持C盘健康状态。

2025-12-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除