程序猿如何才能让自己月薪3万才是终点?这些书籍需要多看看!

转眼,2019年已经过去一大半了。

这半年,你过得怎么样?新的热点技术学会了吗?写的代码还有bug吗?头发还好吗?还记得年初的Flag吗?

你是不是想大喊:我学不动了?

成年人的世界没有“容易”二字,你学不动,别人学得动,你只能靠边站。

引用张爱玲的一句话:中年以后的男人,时常会觉得很孤独,因为他一睁开眼,周围都是要依靠他的人,却没有他可以依靠的人。

开发技术路漫漫,成长的曲线非常的陡峭。如果你想跟上前端高速发展的时代,如果你也想月薪3万不是终点,是起点,如果你也想做点改变,真的不妨平日多看一些书籍,多给自己充充电,全方位提升一下自己的专业知识。

这次给大家推荐的2本书,都是小程序公社精心挑选出来的,本本都是好书,并且都是免费送给大家,最重要的是还包邮

书籍介绍

一、《了不起的JavaScript工程师》从前端到全端的高级进阶

《了不起的JavaScript工程师》是一本涉及面非常广的书籍,将让你了解到前端开发需要连接的各种技术,了解JavaScript在各种Web开发场景下所需要掌握的重点知识和概念。从zui基础的开发工具讲起,再到开发思维方式和前端页面开发,然后扩展到小程序开发和开发工具的混合应用,再讲解前后端交互zui常用的网络协议及API设计,zui后讲解了使用Node.js开发服务器端应用程序所需要掌握的核心概念。

二、《微信小程序项目开发实战——用WePY、mpvue、Taro打造高效的小程序》

本书的目标是高效开发微信小程序。借助WePY、mpvue、Taro等多个框架,帮助读者从零开始迅速掌握小程序的开发步骤和技巧。读者无须理解过于基础的部分,本书以需求中的功能为开发的重点,涉及大量流行的小程序实例。

本书主要分为三个部分:

★第一部分介绍微信小程序的组件和API,以及官方的WePY框架的下载和使用方法。

★第二部分是WePY框架的实战,包括问卷、传感器、富文本显示、上传文件、Canvas等常用小程序的开发。

★第三部分是两个常用的小程序框架mpvue和Taro的实战案例,包括“历史今日”、星座测试小程序的开发。

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值