题目描述:
多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形。每个顶点被赋予一个整数值,每条边被赋予一个运算符“+”或“*”。所有边依次用整数从1到n编号。
游戏第1步,将一条边删除。
游戏第1步,将一条边删除。
随后n-1步按以下方式操作:
(1)选择一条边E以及由E连接着的2个顶点V1和V2;
(2)用一个新的顶点取代边E以及由E连接着的2个顶点V1和V2。将由顶点V1和V2的整数值通过边E上的运算得到的结果赋予新顶点。
最后,所有边都被删除,游戏结束。游戏的得分就是所剩顶点上的整数值。
问题:对于给定的多边形,计算最高得分。
这题和合并石子是同样的思想。
要解决环的问题,可以维护一个2*n的数组
[n..2*n-1]与[0..n-1]一致。
F[i][j] 表示从i到j的最大值
S[k] 表示k到k+1之间的符号
count( int a,int b,char c )
{
if( c == '+' )
return a+b;
else
return a*b;
}
F[i][j] = max{ count( F[i][k],F[k+1][j],S[k] ) }
0 <= i < n
0 <= j < 2*n
j = i + len
0 < len < n
i <= k < j
if( j+n < 2*n )
F[i+n][j+n] = F[i][j];
初始化:
F[i][i] = value[i]
在F[i][i+n-1] ( 0 <= i < n )
中找最大值