【Python与机器学习2-3】pandas包 数据合并分组

本文介绍了如何使用pandas在Python中进行数据合并,包括pd.concat和pd.merge函数的使用,以及如何通过apply和applymap应用函数。此外,还详细讲解了数据分组的概念,包括split-apply-combine过程,并展示了如何对分组数据进行聚合操作。
摘要由CSDN通过智能技术生成

合并

这里写图片描述

pd.concat

数据的列名完全一样只是数据不一样
如df1,df2,df3分别为3个季度的数据,则先把它们放到列表里用pd.concat就会合并成一个数据

pd.concat([df1,df2,df3])

pd.concat对应于numpy的np.concatnate
列数相同时,竖直方向合并 axis=0
行数相同时,水平方向合并 axis=1

pd.merge

根据单个或多个键将不同DataFrame的行连接起来。默认是“内连接”(inner),即结果中的键是交集。

pd.merge(staff_df, student_df, how='outer', on='姓名')

参数:

  • 默认将重叠列的列名作为“外键”进行连接
    on显示指定“外键”,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值