自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

转载 Python中变量、赋值、浅拷贝、深拷贝

变量的类型是分值引用与地址引用两种.python的一切变量都是对象,变量的存储,采用了地址引用的方式,存储的只是一个变量的值所在的内存地址,而不是这个变量的只本身。在Python中可分为基本数据类型和复杂数据结构:基本数据类型:bool、int、long、float、string;复杂数据结构:对于能存储基本数据类型的变量可以把它看做复杂数据结构。如 list、dict、tuple、set;一、变量的初始化(赋值):1.Python中变量的初始化就是在内存中新开辟一块存储变量的值的内存,把这块内

2021-05-14 15:02:26 90

原创 PIP使用国内镜像安装各种库

PIP使用国内镜像安装各种库使用清华大学镜像安装库文件pip install scipy -i https://pypi.tuna.tsinghua.edu.cn/simplepip install (需要安装的库) -i https://pypi.tuna.tsinghua.edu.cn/simple/使用阿里云镜像安装库文件pip install (需要安装的库) -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirro

2021-05-13 12:00:47 1438

原创 2020-11-16

决策树用sklearn写程序分为三步建立模型:1.实例化,建立模型的对象,也就是用什么类2.通过模型接口训练模型,也就是放入训练集训练3.通过模型接口来提取信息程序:#1.引包from sklearn import treefrom sklearn.datasets import load_winefrom sklearn.model_selection import train_test_split# 2 导入数据集wine = load_wine()#3 分割数据集Xtrain

2020-11-16 10:05:03 86

原创 机器学习之knn算法

Knn(K-nearest neighbour)是一种基本分类方法,通过测量不同特征值之间的距离进行分类。他的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中k通常是不大于20的整数。knn算法的结果很大程度上取决于k的选择。在knn算法中,所选择的邻居都是已经正确分类的对象。举个例子:在图中绿色圆要被决定赋予哪一类,是红色三角还是蓝色四方形?如果k=3,则绿色圆将被赋予红色三角形那一类,如果k=5那么绿色圆将被赋予蓝

2020-11-12 10:55:34 280

原创 话说神经网络

话说神经网络我们用一个例子来讲解简单的神经网络我们来举一个去不去看电影的例子:如花小倩小明小强0010111110110110110?0代表不去,1代表去我们先观察一下这组数据的规律:只要如花去,小强就去,那么我们可以用一个公式来代替上面这个例子:AxW1+BxW2+CxW3=?,如图所示。机器学习就是我们不断试错不断改正,直到找到正确的结果的过程。过程主要有以下几步:初始化权重按照权重计算结果计算误差

2020-11-12 10:52:42 205

原创 神经网络常用的激活函数

神经网络常用的激活函数1 恒等函数f(z) = I(z)=z2 sigmoid 函数这个函数通常是用在返回0到1之间的值f(z) = 1/(1+exp(-z))3 tanh(双曲正切)激活函数双曲正切是一条-1~1的S形曲线:f(z) = tanh(z)图像如图4 ReLu(整流线性单元)激活函数f(z) = max(0,z)python 的表达形式为np.maximum(x,0,x)5 Leaky ReLUf(x) = { az(z<0),z (z>0)}a一般

2020-11-12 10:47:22 476

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除