Knn(K-nearest neighbour)是一种基本分类方法,通过测量不同特征值之间的距离进行分类。
他的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中k通常是不大于20的整数。
knn算法的结果很大程度上取决于k的选择。
在knn算法中,所选择的邻居都是已经正确分类的对象。
举个例子:
在图中绿色圆要被决定赋予哪一类,是红色三角还是蓝色四方形?
如果k=3,则绿色圆将被赋予红色三角形那一类,如果k=5那么绿色圆将被赋予蓝色四方形类
在knn中,通常计算对象距离来作为各个对象之间的非相似性指标,距离一般使用欧式距离或曼哈顿距离:
knn算法:
在训练集中数据和标签已知的情况下,输入测试集数据,将测试数据的特征和训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前k个数据,则该测试数据对应的类别就是k个数据中出现测数最多的那个分类,其算法的描述为:
1)计算测试数据与各个训练数据之间的距离;
2)按照距离的递增关系进行排序;
3)选取距离最小的k个点;
4)确定前k个点所在类别的出现频率;
5)返回前k个点中出现频率最高的类别作为测试数据的预测分类。
import nump as np
import pandas as pd
#引入数据集 鸢尾花
from sklearn.datasets import load_iris
# 切分为训练集和测试集
from sklearn.model_selection import train_test_split
#计算预测模型的准确率
from sklearn.metrics import accuracy_score
#数据加载和预处理
iris = load_iris()
#print(iris)
df = pd.DataFrame(data=iris.data,columns=iris.feature_names)
#print(df)
df['class']=iris.target
df['class']=df['class'].map({0:iris.target_names[0],1:iris.target_names[1],2:iris.target_names[2]})
#print(df.describe())
x = iris.data
#将数据换成n行一列的一个二维数组
y = iris.target.reshape(-1,1)
#划分训练集和测试集,有一个随机种子(就是为了是每一次运行的结果一样,因为设置了他每次随机的数是一样的,对于数值随机设置一个就可以)
# stratify=y:依据标签y,按原数据y中各类比例,分配给train和test,使得train和test中各类数据的比例与原数据集一样
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=35,stratify=y)
print(x_test)
#print(x_train.shape,y_train.shape)
x_test[0].reshape(1,-1).shape
#axis =1就是将每一行相加得到一个数,如果没有那么是所有的相加得到一个数
np.sum(np.abs(x_train-x_test[0].reshape(1,-1)),axis=1)
dist = np.array([3,2,44,565,6678,843,2])
index = np.argsort(dist)
#print(index[:5]) #[1 6 0 2 3]
nn_y = y_train[index[:5]]
#print(nn_y) # [[2][1][1][2][2]]
y_n=nn_y.ravel()
#print(y_n) # [2 1 1 2 2]
#print(np.bincount(y_n)) # [0 2 3]
#距离函数定义:,a是矩阵,b是一个行向量
def l1_distance(a,b):
#axis的意思是轴的意思,也就是对应的矩阵的行和列,最后保存结果为一列
return np.sum(np.abs(a-b),axis=1)
#距离函数定义:欧氏距离,a是矩阵,b是一个行向量
def l2_distance(a,b):
#axis的意思是轴的意思,也就是对应的矩阵的行和列,最后保存结果为一列
return np.sqrt(np.sum((a-b)**2,axis=1))
#分类器的实现
class kNN(object):
#定义一个初始化方法
def __init__(self,n_neighbors = 1,dist_func = l1_distance):
self.n_neighbors=n_neighbors
self.dist_func = dist_func
# 训练模型方法
def fit(self,x,y):
self.x_train = x
self.y_train = y
# 模型预测方法
def predict(self,x):
# 初始化预测分类数组
y_pred = np.zeros((x.shape[0],1),dtype=self.y_train.dtype)
#遍历输入的x数据点,取出每个数据点的序号i和数据x_test
for i,x_test in enumerate(x):
#x_test跟所有训练数据的计算距离
distances = self.dist_func(self.x_train,x_test)
#得到的距离按照由近到远排序,取出索引值
nn_index = np.argsort(distances)
#选取最近的k个点,保存他们对应的分类类别
nn_y = self.y_train[nn_index[:self.n_neighbors]].ravel()
#返回的是下标
y_pred[i] = np.argmax(np.bincount(nn_y))
print("y_pr",y_pred)
return y_pred
#定义一个knn实例
#knn = kNN(n_neighbors=3)
knn = kNN()
#训练模型
#knn.fit(x_train,y_train)
knn.fit(x_train,y_train)
result_list = []
for p in [1,2]:
knn.dist_func =l1_distance if p==1 else l2_distance
for k in range(1,10,2):
knn.n_neighbors=k
y_pred = knn.predict(x_test)
accuracy = accuracy_score(y_test, y_pred)
result_list.append([k,'l1_distance' if p==1 else 'l2_distance',accuracy])
df = pd.DataFrame(result_list,columns=['k','距离函数','预测准确率'])
print(df)
本文参考尚硅谷机器学习和推荐系统项目实战教程全套完整版(初学者零基础快速入门)写作目的日常笔记。