152. Maximum Product Subarray

https://leetcode.com/problems/maximum-product-subarray/description/

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

解题思路
此题局部最优并不能代表全局最优 乘法因为存在负数 所以需要维护一个最小数组

dp_min[i] =min(dp_min[i-1]*A[i],dp_max[i-1]*A[i],A[i]) 
dp_max[i] =max(dp_min[i-1]*A[i],dp_max[i-1]*A[i],A[i])
max(max,dp_max[i])
public class Maximum_Product_Subarray_152 {

    /**
     * 
     * 此题局部最优并不能代表全局最优 乘法因为存在负数 所以需要维护一个最小数组 dp_min[i] =
     * min(dp_min[i-1]*A[i],dp_max[i-1]*A[i],A[i]) dp_max[i] =
     * max(dp_min[i-1]*A[i],dp_max[i-1]*A[i],A[i]) max(max,dp_max[i])
     * 
     * @param nums
     * @return
     */
    public int maxProduct(int[] nums) {
        int n = nums.length;
        int max=nums[0];
        int[] dp_min = new int[n];
        int[] dp_max = new int[n];
        dp_min[0]=dp_max[0]=nums[0];            
        for(int i=1;i<nums.length;i++){
            dp_min[i] = Math.min(
                    nums[i],Math.min(dp_min[i-1]*nums[i], dp_max[i-1]*nums[i]));
            dp_max[i] = Math.max(
                    nums[i],Math.max(dp_min[i-1]*nums[i], dp_max[i-1]*nums[i]));
            max = Math.max(dp_max[i], max);
        }

        return max;
    }

    public static void main(String[] args) {
        new Maximum_Product_Subarray_152()
                .maxProduct(new int[] { 2, 3, -2, 4 });
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值