洛谷3600,大力期望DP

传送门
这题从下午做到晚上,真是欲仙欲死。
题解区里有题解,就不说了,一开始有三个地方写挂。
1.把包含于被包含的关系想反了;
2.没有考虑一个元素不在任何询问里的情况
3.处理2问题我用的是排序,而且cmp是return l<x.l;
感觉我好菜啊。

#include<cstdio>
#include<cstring> 
#include<algorithm>
typedef long long ll;
const int N=2010;
const ll mo=666623333;
int n,m,i,j,f[N],x,q,k,p,ans,g[N],s,s1,s2,pp[N],inp[N];
struct seg{
    int l,r;
    bool operator<(const seg&x)const{
        return l<x.l || (l==x.l && r<x.r);
    }
}a[N],b[N];
bool bb[N];
ll pow(ll x,int y){
    if(!y)return 1;
    ll u=pow(x,y>>1);
    return y&1?u*u%mo*x%mo:u*u%mo; 
}
int main(){
    //freopen("a.txt","r",stdin);
    scanf("%d%d%d",&n,&x,&q);
    for(i=1;i<=q;++i){
        scanf("%d%d",&a[i].l,&a[i].r);
        for(j=1;j<i;++j)
            if(a[j].l<=a[i].l && a[i].r<=a[j].r)bb[j]=1;
                else if(a[i].l<=a[j].l && a[j].r<=a[i].r)bb[i]=1;
    }
    for(i=1;i<=q;++i)if(!bb[i])a[++m]=a[i];
    std::sort(a+1,a+m+1);
    for(i=1;i<=n;++i)
        for(j=1;j<=m;++j)
            if(a[j].l<=i && i<=a[j].r)b[i].l?b[i].r=j:b[i].l=b[i].r=j;
    std::sort(b+1,b+n+1);
    for(i=1;i<=n && !b[i].l;++i);
    for(j=i;j<=n;++j)b[j-i+1]=b[j];
    n-=i-1;
    for(i=*inp=*pp=1;i<x;++i){
        p=1ll*i*pow(x,mo-2)%mo;
        for(pp[j=1]=1+mo-p;j<=n;++j)pp[j]=1ll*pp[1]*pp[j-1]%mo;
        for(inp[j=1]=pow(pp[1],mo-2);j<=n;++j)inp[j]=1ll*inp[j-1]*inp[1]%mo;
        memset(g,0,sizeof g);
        for(k=s=0,j=1;j<=n;++j){
            while(b[k].r<b[j].l-1)s=(s+mo-g[k++])%mo;
            f[j]=1ll*p*pp[j-1]%mo*(s+(b[j].l==1))%mo;
            s=(s+(g[j]=1ll*f[j]*inp[j]%mo))%mo;
        }
        for(s1=0,j=1;j<=n;++j)
            if(b[j].r==m)s1=(s1+1ll*f[j]*pp[n-j])%mo;
        ans=(ans+1ll*(s1+mo-s2)*i)%mo;
        s2=s1;
    }
    printf("%lld\n",(ans+1ll*(1+mo-s2)*x%mo)%mo);
    return 0;
}
### 关于洛谷平台上的区间动态规划乘积问题 #### 解析与实现 对于洛谷平台上涉及区间动态规划(DP)并处理乘积问题的任务,可以考虑如下解析方法: 在解决此类问题时,通常定义 `f(i, j)` 表示从前 `i` 个数字中插入 `j` 个乘号所能得到的最大乘积[^1]。初始条件设定为当不插入任何乘号 (`j = 0`) 的情况下,`f(i, 0)` 应等于由第 `1` 至第 `i` 数字组成的整数值;而如果尝试在一个长度不足以容纳所需乘号数量的情况下求解,则返回 `0`。 为了有效推进解决方案,在遍历过程中需维护一个三维数组来存储中间结果,其中第三维代表当前已使用的乘号数目。通过迭代更新这些值直到达到所需的乘号总数为止,最终可获得全局最优解。具体来说,状态转移方程表达式为: \[ f(i,j)=\max{\left(f(k,j-1)\times S[k+1]\cdots S[i]\right)} \] 此处 \(S[k+1]\cdots S[i]\) 是指从位置 `k + 1` 开始到 `i` 结束这一段连续子串所表示的整数[^2]。 ```python def max_product(n, s, k): # 初始化 DP table 和辅助变量 dp = [[0] * (k + 1) for _ in range(n)] # 设置基础情形下的值 for i in range(1, n + 1): num_str = int(s[:i]) dp[i - 1][0] = num_str # 动态规划填表过程 for cnt_mul in range(1, min(k, n - 1) + 1): # 控制乘号的数量 for end_pos in range(cnt_mul, n): # 当前考察序列结尾处索引 temp_max = float('-inf') for split_point in range(end_pos): product_part = int(s[split_point + 1 : end_pos + 1]) current_val = dp[split_point][cnt_mul - 1] * product_part if current_val > temp_max: temp_max = current_val dp[end_pos][cnt_mul] = temp_max return str(dp[-1][-1]) # 示例调用函数 n = 5 s = "9876" k = 2 print(max_product(n, s, k)) ``` 此代码片段实现了上述提到的状态转移逻辑,并针对给定输入参数进行了测试验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值