(期望dp)洛谷P1654OSU!

洛谷P1654OSU!

思路:

利用期望的性质:
E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
E ( C ) = C , C 为 常 数 E(C)=C,C为常数 E(C)=CC
设连续 i i i个数为 1 1 1,贡献的期望为 E ( i 3 ) E(i^3) E(i3)。可得:
E ( i ) = ( E ( i − 1 ) + 1 ) × p i E(i)=(E(i-1)+1)\times p_i E(i)=(E(i1)+1)×pi
E ( i 2 ) = ( E ( ( i − 1 ) 2 ) + 2 E ( i − 1 ) + 1 ) × p i E(i^2)=(E((i-1)^2)+2E(i-1)+1)\times p_i E(i2)=(E((i1)2)+2E(i1)+1)×pi
E ( i 3 ) = ( E ( ( i − 1 ) 3 ) + 3 E ( ( i − 1 ) 2 ) + 3 E ( i − 1 ) + 1 ) × p i E(i^3)=(E((i-1)^3)+3E((i-1)^2)+3E(i-1)+1)\times p_i E(i3)=(E((i1)3)+3E((i1)2)+3E(i1)+1)×pi
d p k , i dp_{k,i} dpk,i为前 i i i个数的贡献期望, k k k表示连续个数为 X X X时贡献为 X k X^k Xk,可得:
d p 1 , i = E ( i ) = ( d p 1 , i − 1 + 1 ) × p i dp_{1,i}=E(i)=(dp_{1,i-1}+1)\times p_i dp1,i=E(i)=(dp1,i1+1)×pi
d p 2 , i = E ( i 2 ) = ( d p 2 , i − 1 + 2 × d p 1 , i − 1 + 1 ) × p i dp_{2,i}=E(i^2)=(dp_{2,i-1}+2\times dp_{1,i-1}+1)\times p_i dp2,i=E(i2)=(dp2,i1+2×dp1,i1+1)×pi
d p 3 , i = E ( i 3 ) + d p 3 , i − 1 × ( 1 − p i ) = ( E ( ( i − 1 ) 3 ) + 3 E ( ( i − 1 ) 2 ) + 3 E ( i − 1 ) + 1 ) × p i + d p 3 , i − 1 × ( 1 − p i ) = d p 3 , i − 1 + ( 3 × d p 2 , i − 1 + 3 × d p 1 , i − 1 + 1 ) × p i \begin{aligned}dp_{3,i}&=E(i^3)+dp_{3,i-1}\times(1-p_i)\\&=(E((i-1)^3)+3E((i-1)^2)+3E(i-1)+1)\times p_i+dp_{3,i-1}\times(1-p_i)\\&=dp_{3,i-1}+(3\times dp_{2,i-1}+3\times dp_{1,i-1}+1)\times p_i\end{aligned} dp3,i=E(i3)+dp3,i1×(1pi)=(E((i1)3)+3E((i1)2)+3E(i1)+1)×pi+dp3,i1×(1pi)=dp3,i1+(3×dp2,i1+3×dp1,i1+1)×pi
输出 d p 3 , n dp_{3,n} dp3,n即可。

代码:

#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define loop(x,y,z) for(x=y;x<=z;x++)
#define reve(x,y,z)	for(x=y;x>=z;x--)
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int N=1e6+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
double dp[5][N],p[N];
int main()
{
	int n,i;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
		scanf("%lf",&p[i]);
	for(i=1;i<=n;i++)
	{
		dp[1][i]=(dp[1][i-1]+1)*p[i];
		dp[2][i]=(dp[2][i-1]+2*dp[1][i-1]+1)*p[i];
		dp[3][i]=dp[3][i-1]+(3*dp[2][i-1]+3*dp[1][i-1]+1)*p[i];
	}
	printf("%.1lf\n",dp[3][n]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值