洛谷3816

这题很神奇。
一开始我读了很久才弄明白红黑树的定义。
然后觉得可能是个构造题,想了一个下午,感觉要很多特判。
又觉得可能是DP,状态是f[i][j]表示 i 个节点且黑高为j的红黑树的答案,有一个很显然的 O(n2logn) 算法,可惜要T。
我把转移的表打出来,以为f[i][j]肯定从二的幂次,或二的幂次减一转移而来,否则记从 x 转移而来,那么似乎x是不降的。
接着就是码码码,一直WA,百度了一下,似乎没结果,只有一篇FJOI2017Day2的游记,好像里面有结论。回头仔细看了看表,发现我的眼睛多半有问题。
看表要仔细啊!
另:这个题目显式地告诉我们红黑树很平衡。

#include<cstdio>
int n,i,j,b[30005][50],k,r[30005][50],bh[30005],f;
inline void up(int&a,int b){
    if(a<b)a=b;//,printf("%d %d %d\n",i,j,k);
}
int main(){
    for(i=2,bh[1]=1;i<=30000;++i)bh[i]=(1<<bh[i-1])<=i?bh[i-1]+1:bh[i-1];
    for(i=3,b[1][1]=r[1][0]=1,b[2][1]=3;i<=30000;++i)
        for(j=1;j<=bh[i]<<1;++j)if(j<=30){
            if(i==16){
                ++i;
                --i;
            }
            k=(1<<(j-1))-1;
            if(k<i){
            if(b[k][j-1] && b[i-k-1][j-1])up(b[i][j],i+b[k][j-1]+b[i-k-1][j-1]);
            if(b[k][j-1] && r[i-k-1][j-1])up(b[i][j],i+b[k][j-1]+r[i-k-1][j-1]);
            if(r[k][j-1] && b[i-k-1][j-1])up(b[i][j],i+r[k][j-1]+b[i-k-1][j-1]);
            if(r[k][j-1] && r[i-k-1][j-1])up(b[i][j],i+r[k][j-1]+r[i-k-1][j-1]);
            if(b[k][j] && b[i-k-1][j])up(r[i][j],i+b[k][j]+b[i-k-1][j]);}
            k=(1<<j)-1;
            if(k<i){
            if(b[k][j-1] && b[i-k-1][j-1])up(b[i][j],i+b[k][j-1]+b[i-k-1][j-1]);
            if(b[k][j-1] && r[i-k-1][j-1])up(b[i][j],i+b[k][j-1]+r[i-k-1][j-1]);
            if(r[k][j-1] && b[i-k-1][j-1])up(b[i][j],i+r[k][j-1]+b[i-k-1][j-1]);
            if(r[k][j-1] && r[i-k-1][j-1])up(b[i][j],i+r[k][j-1]+r[i-k-1][j-1]);
            if(b[k][j] && b[i-k-1][j])up(r[i][j],i+b[k][j]+b[i-k-1][j]);}
            k=i-(1<<(bh[i]-1));
            if(k<i){
            if(b[k][j-1] && b[i-k-1][j-1])up(b[i][j],i+b[k][j-1]+b[i-k-1][j-1]);
            if(b[k][j-1] && r[i-k-1][j-1])up(b[i][j],i+b[k][j-1]+r[i-k-1][j-1]);
            if(r[k][j-1] && b[i-k-1][j-1])up(b[i][j],i+r[k][j-1]+b[i-k-1][j-1]);
            if(r[k][j-1] && r[i-k-1][j-1])up(b[i][j],i+r[k][j-1]+r[i-k-1][j-1]);
            if(b[k][j] && b[i-k-1][j])up(r[i][j],i+b[k][j]+b[i-k-1][j]);}
        }
    //return 0;
    while(scanf("%d",&n)!=EOF && n){
        for(f=b[n][i=1];i<=bh[n]<<1;++i)up(f,b[n][i]),up(f,r[n][i]);
        printf("%d\n",f);
    }
    return puts("0"),0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值