红黑树的介绍

红黑树是一种二叉搜索树,通过节点颜色来保持近乎平衡。文章介绍了红黑树的基本概念、性质、节点定义,特别是插入操作的三种情况及处理方式。此外,还讨论了红黑树与AVL树在性能上的比较,红黑树在插入操作上相对较优,常用于动态数据结构。
摘要由CSDN通过智能技术生成

1.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍因而是接近平衡的
在这里插入图片描述

2. 红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)NIL结点

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?
在这里插入图片描述

3. 红黑树的结点定义

在这里插入图片描述
思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
答案:插入红色会可能会影响性质3,而插入黑色必定会影响性质4;影响了性质3容易修改,而影响性质4,难以修改,所以我们要默认插入的结点为红色,在对相应的情况进行调整!

4. 红黑树的插入操作

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一: cur为红,p为红,g为黑,u存在且为红

在这里插入图片描述

cur和p均为红,违反了性质三,此处能否将p直接改为黑?
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

在这里插入图片描述

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

在这里插入图片描述
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2

5. 代码实现

	bool Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_color = BLACK;
			return true;
		}
		
		//插入结点
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur != nullptr)
		{
			if (cur->_data > data)
			{
				parent = cur;
				cur = cur->_pLeft;
			}
			else if (cur->_data < data)
			{
				parent = cur;
				cur = cur->_pRight;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(data);
		if (parent->_data > data)
		{
			parent->_pLeft = cur;
		}
		else
		{
			parent->_pRight = cur;
		}
		cur->_pParent = parent;

		//进行调整调色
		while (parent != nullptr && parent->_color == RED)//父亲结点是红色就进行调整
		{
			Node* granfather = parent->_pParent;
			if (parent == granfather->_pLeft)
			{
				Node* uncle = granfather->_pRight;
				if (uncle != nullptr && uncle->_color == RED)
				{
					granfather->_color = RED;
					parent->_color = BLACK;
					uncle->_color = BLACK;

					//继续往上调整
					cur = granfather;
					parent = cur->_pParent;
				}
				else// 情况2+3:u不存在/u存在且为黑,旋转+变色
				{
					//     g
					//   p   u
					// c 
					if (cur == parent->_pLeft)
					{
						RotateR(granfather);
						parent->_color = BLACK;
						granfather->_color = RED;
					}
					else
					{
						RotateL(parent);
						RotateR(granfather);
						parent->_color = RED;
						granfather->_color = RED;
						cur->_color = BLACK;
					}
					break;
				}
			}
			else
			{
				//    g
				//  u   p
				Node* uncle = granfather->_pLeft;
				if (uncle != nullptr && uncle->_color == RED)
				{
					granfather->_color = RED;
					parent->_color = BLACK;
					uncle->_color = BLACK;

					//继续往上调整
					cur = granfather;
					parent = cur->_pParent;
				}
				else
				{
					if (parent->_pRight == cur)
					{
						//    g
						//  u   p
						//        c
						RotateL(granfather);
						parent->_color = BLACK;
						granfather->_color = RED;
					}
					else
					{
						//    g
						//  u   p
						//     c
						RotateR(parent);
						RotateL(granfather);
						cur->_color = BLACK;
						parent->_color = RED;
						granfather->_color = RED;
					}
					break;
				}
			}
		}
		_root->_color = BLACK;
		return true;
	}

6. 红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质

在这里插入图片描述
在这里插入图片描述

9.AVL树和红黑树性能比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杰深入学习计算机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值