文章目录
1.图的一种分类:无权图、有权图
2.无权图的表示
邻接矩阵实现:
// 稠密图
class DenseGraph{
private:
int n, m; // 节点数和边数
bool directed; // 是否为有向图
vector<vector<bool>> g; // 图的具体数据
public:
DenseGraph( int n , bool directed ){
assert( n >= 0 );
this->n = n;
this->m = 0; // 初始化没有任何边
this->directed = directed;
// g初始化为n*n的布尔矩阵, 每一个g[i][j]均为false, 表示没有任和边
//实现方式1:
g = vector<vector<bool>>(n, vector<bool>(n, false));
/*实现方式2:
for(int i=0; i<n; i++)
g.push_back(vector<bool>(n,false));
}
*/
~DenseGraph(){ }
int V(){ return n;} // 返回节点个数
int E(){ return m;} // 返回边的个数
// 向图中添加一个边
void addEdge( int v , int w ){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
if( hasEdge( v , w ) )
return;
g[v][w] = true;
if( !directed )
g[w][v] = true;
m ++;
}
// 验证图中是否有从v到w的边
bool hasEdge( int v , int w ){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
return g[v][w];
}
};
邻接表实现:
class SparseGraph{
private:
int n, m; // 节点数和边数
bool directed; // 是否为有向图
vector<vector<int>> g; // 图的具体数据
public:
SparseGraph( int n , bool directed ){
assert( n >= 0 );
this->n = n;
this->m = 0; // 初始化没有任何边
this->directed = directed;
// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
//实现方式1:
g = vector<vector<int>>(n, vector<int>());
/*实现方式2:
for(int i=0; i<n; i++)
g.push_back(vector<int>( ));
*/
}
~SparseGraph(){ }
int V(){ return n;} // 返回节点个数
int E(){ return m;} // 返回边的个数
// 向图中添加一个边
void addEdge( int v, int w ){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
g[v].push_back(w);
if( v != w && !directed )
g[w].push_back(v);
m ++;
}
// 验证图中是否有从v到w的边
bool hasEdge( int v , int w ){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
for( int i = 0 ; i < g[v].size() ; i ++ )
if( g[v][i] == w )
return true;
return false;
}
};
3.无权图的联通分量、最短路径
3.1 深度优先遍历求连通分量
// 求无权图的联通分量
template <typename Graph>
class Component{
private:
Graph &G; // 图的引用
bool *visited; // 记录dfs的过程中节点是否被访问
int ccount; // 记录联通分量个数
int *id; // 每个节点所对应的联通分量标记
// 图的深度优先遍历
void dfs( int v ){
visited[v] = true;
id[v] = ccount;
typename Graph::adjIterator adj(G, v); //相邻结点迭代器
for( int i = adj.begin() ; !adj.end() ; i = adj.next() ){
if( !visited[i] )
dfs(i);
}
}
public:
Component(Graph &graph): G(graph){
visited = new bool[G.V()];
id = new int[G.V()];
ccount = 0;
for( int i = 0 ; i < G.V() ; i ++ ){
visited[i] = false;
id[i] = -1;
}
// 求图的联通分量
for( int i = 0 ; i < G.V() ; i ++ )
if( !visited[i] ){
dfs(i);
ccount ++;
}
}
~Component(){
delete[] visited;
delete[] id;
}
// 返回图的联通分量个数
int count(){
return ccount;
}
// 查询点v和点w是否联通
bool isConnected( int v , int w ){
assert( v >= 0 && v < G.V() );
assert( w >= 0 && w < G.V() );
return id[v] == id[w];
}
};
3.2 广度优先遍历求最短路径
// 寻找无权图的最短路径
template <typename Graph>
class ShortestPath{
private:
Graph &G; // 图的引用
int s; // 起始点
bool *visited; // 记录dfs的过程中节点是否被访问
int *from; // 记录路径, from[i]表示查找的路径上i的上一个节点
int *ord; // 记录路径中节点的次序。ord[i]表示i节点在路径中的次序。
public:
// 寻找无权图graph从s点到其他点的最短路径
ShortestPath(Graph &graph, int s):G(graph){
// 算法初始化
assert( s >= 0 && s < graph.V() );
visited = new bool[graph.V()];
from = new int[graph.V()];
ord = new int[graph.V()];
for( int i = 0 ; i < graph.V() ; i ++ ){
visited[i] = false;
from[i] = -1;
ord[i] = -1;
}
this->s = s;
// 无向图最短路径算法, 从s开始广度优先遍历整张图
queue<int> q;
q.push( s );
visited[s] = true;
ord[s] = 0;
while( !q.empty() ){
int v = q.front();
q.pop();
typename Graph::adjIterator adj(G, v);
for( int i = adj.begin() ; !adj.end() ; i = adj.next() )
if( !visited[i] ){
q.push(i);
visited[i] = true;
from[i] = v;
ord[i] = ord[v] + 1;
}
}
}
~ShortestPath(){
delete [] visited;
delete [] from;
delete [] ord;
}
// 查询从s点到w点是否有路径
bool hasPath(int w){
assert( w >= 0 && w < G.V() );
return visited[w];
}
// 查询从s点到w点的路径, 存放在vec中
void path(int w, vector<int> &vec){
assert( w >= 0 && w < G.V() );
stack<int> s;
// 通过from数组逆向查找到从s到w的路径, 存放到栈中
int p = w;
while( p != -1 ){
s.push(p);
p = from[p];
}
// 从栈中依次取出元素, 获得顺序的从s到w的路径
vec.clear();
while( !s.empty() ){
vec.push_back( s.top() );
s.pop();
}
}
// 打印出从s点到w点的路径
void showPath(int w){
assert( w >= 0 && w < G.V() );
vector<int> vec;
path(w, vec);
for( int i = 0 ; i < vec.size() ; i ++ ){
cout<<vec[i];
if( i == vec.size()-1 )
cout<<endl;
else
cout<<" -> ";
}
}
// 查看从s点到w点的最短路径长度
int length(int w){
assert( w >= 0 && w < G.V() );
return ord[w];
}
};
4.有权图表示
自定义一个Edge类来表示边上权重信息和所连接的节点
template<typename Weight>
class Edge{
private:
int a,b; // 边的两个端点
Weight weight; // 边的权值
public:
Edge(int a, int b, Weight weight){
this->a = a;
this->b = b;
this->weight = weight;
}
// 空的构造函数, 所有的成员变量都取默认值
Edge(){}
~Edge(){}
int v(){ return a;} // 返回第一个顶点
int w(){ return b;} // 返回第二个顶点
Weight wt(){ return weight;} // 返回权值
// 给定一个顶点, 返回另一个顶点
int other(int x){
assert( x == a || x == b );
return x == a ? b : a;
}
// 输出边的信息
friend ostream& operator<<(ostream &os, const Edge &e){
os<<e.a<<"-"<<e.b<<": "<<e.weight;
return os;
}
// 边的大小比较, 是对边的权值的大小比较
bool operator<(Edge<Weight>& e){
return weight < e.wt();
}
bool operator<=(Edge<Weight>& e){
return weight <= e.wt();
}
bool operator>(Edge<Weight>& e){
return weight > e.wt();
}
bool operator>=(Edge<Weight>& e){
return weight >= e.wt();
}
bool operator==(Edge<Weight>& e){
return weight == e.wt();
}
};
//邻接矩阵实现
// 稠密图 - 邻接矩阵
template <typename Weight>
class DenseGraph{
private:
int n, m; // 节点数和边数
bool directed; // 是否为有向图
vector<vector<Edge<Weight> *>> g; // 图的具体数据
public:
DenseGraph( int n , bool directed){
assert( n >= 0 );
this->n = n;
this->m = 0;
this->directed = directed;
// g初始化为n*n的矩阵, 每一个g[i][j]指向一个边的信息, 初始化为NULL
//实现1:
g = vector<vector<Edge<Weight> *>>(n, vector<Edge<Weight> *>(n, NULL));
/*实现方式2:
for(int i=0; i<n; i++)
g.push_back(vector<Edge<Weight> *>(n,NULL)); }
*/
}
~DenseGraph(){
for( int i = 0 ; i < n ; i ++ )
for( int j = 0 ; j < n ; j ++ )
if( g[i][j] != NULL )
delete g[i][j];
}
int V(){ return n;} // 返回节点个数
int E(){ return m;} // 返回边的个数
// 向图中添加一个边, 权值为weight
void addEdge( int v, int w , Weight weight ){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
// 如果从v到w已经有边, 删除这条边
if( hasEdge( v , w ) ){
delete g[v][w];
if( v != w && !directed )
delete g[w][v];
m --;
}
g[v][w] = new Edge<Weight>(v, w, weight);
if( v != w && !directed )
g[w][v] = new Edge<Weight>(w, v, weight);
m ++;
}
// 验证图中是否有从v到w的边
bool hasEdge( int v , int w ){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
return g[v][w] != NULL;
}
// 显示图的信息
void show(){
for( int i = 0 ; i < n ; i ++ ){
for( int j = 0 ; j < n ; j ++ )
if( g[i][j] )
cout<<g[i][j]->wt()<<"\t";
else
cout<<"NULL\t";
cout<<endl;
}
}
};
//邻接列表实现
// 稀疏图 - 邻接表
template<typename Weight>
class SparseGraph{
private:
int n, m; // 节点数和边数
bool directed; // 是否为有向图
vector<vector<Edge<Weight> *> > g; // 图的具体数据
public:
SparseGraph( int n , bool directed){
assert(n >= 0);
this->n = n;
this->m = 0; // 初始化没有任何边
this->directed = directed;
// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
//实现1:
g = vector<vector<Edge<Weight> *> >(n, vector<Edge<Weight> *>());
//实现2:
/*
for(int i=0; i<n; i++)
g.push_back(vector<Edge<Weight> *>());
*/
}
// 析构函数
~SparseGraph(){
for( int i = 0 ; i < n ; i ++ )
for( int j = 0 ; j < g[i].size() ; j ++ )
delete g[i][j];
}
int V(){ return n;} // 返回节点个数
int E(){ return m;} // 返回边的个数
// 向图中添加一个边, 权值为weight
void addEdge( int v, int w , Weight weight){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
// 注意, 由于在邻接表的情况, 查找是否有重边需要遍历整个链表
// 我们的程序允许重边的出现
g[v].push_back(new Edge<Weight>(v, w, weight));
if( v != w && !directed )
g[w].push_back(new Edge<Weight>(w, v, weight));
m ++;
}
// 验证图中是否有从v到w的边
bool hasEdge( int v , int w ){
assert( v >= 0 && v < n );
assert( w >= 0 && w < n );
for( int i = 0 ; i < g[v].size() ; i ++ )
if( g[v][i]->other(v) == w )
return true;
return false;
}
// 显示图的信息
void show(){
for( int i = 0 ; i < n ; i ++ ){
cout<<"vertex "<<i<<":\t";
for( int j = 0 ; j < g[i].size() ; j ++ )
cout<<"( to:"<<g[i][j]->w()<<",wt:"<<g[i][j]->wt()<<")\t";
cout<<endl;
}
}
};
5.最小生成树
找出图中一棵树,连接所有节点,并且权值之和最小
5.1 切分定理
5.2 Prim算法(利用切分定理,从一个点开始,一点点扩散,直至求出最小生成树)
。。。
。。。
//实现:
// 使用Prim算法求图的最小生成树
template<typename Graph, typename Weight>
class LazyPrimMST{
private:
Graph &G; // 图的引用
MinHeap<Edge<Weight>> pq; // 最小堆, 算法辅助数据结构
bool *marked; // 标记数组, 在算法运行过程中标记节点i是否被访问
vector<Edge<Weight>> mst; // 最小生成树所包含的所有边
Weight mstWeight; // 最小生成树的权值
// 访问节点v
void visit(int v){
assert( !marked[v] );
marked[v] = true;
// 将和节点v相连接的所有未访问的边放入最小堆中
typename Graph::adjIterator adj(G,v);
for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() )
if( !marked[e->other(v)] )
pq.insert(*e);
}
public:
LazyPrimMST(Graph &graph):G(graph), pq(MinHeap<Edge<Weight>>(graph.E())){
// 算法初始化
marked = new bool[G.V()];
for( int i = 0 ; i < G.V() ; i ++ )
marked[i] = false;
mst.clear();
// Lazy Prim
visit(0);
while( !pq.isEmpty() ){
// 使用最小堆找出已经访问的边中权值最小的边
Edge<Weight> e = pq.extractMin();
// 如果这条边的两端都已经访问过了, 则扔掉这条边
if( marked[e.v()] == marked[e.w()] )
continue;
// 否则, 这条边则应该存在在最小生成树中
mst.push_back( e );
// 访问和这条边连接的还没有被访问过的节点
if( !marked[e.v()] )
visit( e.v() );
else
visit( e.w() );
}
// 计算最小生成树的权值
mstWeight = mst[0].wt();
for( int i = 1 ; i < mst.size() ; i ++ )
mstWeight += mst[i].wt();
}
~LazyPrimMST(){
delete[] marked;
}
// 返回最小生成树的所有边
vector<Edge<Weight>> mstEdges(){
return mst;
};
// 返回最小生成树的权值
Weight result(){
return mstWeight;
};
};
5.2.1 优化
IndexMinHeap:每个heap节点保存的是与该节点 横切边权值最小值
。。。
。。。
//实现
// 使用优化的Prim算法求图的最小生成树
template<typename Graph, typename Weight>
class PrimMST{
private:
Graph &G; // 图的引用
IndexMinHeap<Weight> ipq; // 最小索引堆, 算法辅助数据结构
vector<Edge<Weight>*> edgeTo; // 访问的点所对应的边, 算法辅助数据结构
bool* marked; // 标记数组, 在算法运行过程中标记节点i是否被访问
vector<Edge<Weight>> mst; // 最小生成树所包含的所有边
Weight mstWeight; // 最小生成树的权值
// 访问节点v
void visit(int v){
assert( !marked[v] );
marked[v] = true;
// 将和节点v相连接的未访问的另一端点, 和与之相连接的边, 放入最小堆中
typename Graph::adjIterator adj(G,v);
for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() ){
int w = e->other(v);
// 如果边的另一端点未被访问
if( !marked[w] ){
// 如果从没有考虑过这个端点, 直接将这个端点和与之相连接的边加入索引堆
if( !edgeTo[w] ){
edgeTo[w] = e;
ipq.insert(w, e->wt());
}
// 如果曾经考虑这个端点, 但现在的边比之前考虑的边更短, 则进行替换
else if( e->wt() < edgeTo[w]->wt() ){
edgeTo[w] = e;
ipq.change(w, e->wt());
}
}
}
}
public:
// 构造函数, 使用Prim算法求图的最小生成树
PrimMST(Graph &graph):G(graph), ipq(IndexMinHeap<double>(graph.V())){
assert( graph.E() >= 1 );
// 算法初始化
marked = new bool[G.V()];
for( int i = 0 ; i < G.V() ; i ++ ){
marked[i] = false;
edgeTo.push_back(NULL);
}
mst.clear();
// Prim
visit(0);
while( !ipq.isEmpty() ){
// 使用最小索引堆找出已经访问的边中权值最小的边
// 最小索引堆中存储的是点的索引, 通过点的索引找到相对应的边
int v = ipq.extractMinIndex();
assert( edgeTo[v] );
mst.push_back( *edgeTo[v] );
visit( v );
}
mstWeight = mst[0].wt();
for( int i = 1 ; i < mst.size() ; i ++ )
mstWeight += mst[i].wt();
}
~PrimMST(){
delete[] marked;
}
vector<Edge<Weight>> mstEdges(){
return mst;
};
Weight result(){
return mstWeight;
};
};
5.3 Kruskal算法
实现:
// Kruskal算法
template <typename Graph, typename Weight>
class KruskalMST{
private:
vector<Edge<Weight>> mst; // 最小生成树所包含的所有边
Weight mstWeight; // 最小生成树的权值
public:
// 构造函数, 使用Kruskal算法计算graph的最小生成树
KruskalMST(Graph &graph){
// 将图中的所有边存放到一个最小堆中
MinHeap<Edge<Weight>> pq( graph.E() );
for( int i = 0 ; i < graph.V() ; i ++ ){
typename Graph::adjIterator adj(graph,i);
for( Edge<Weight> *e = adj.begin() ; !adj.end() ; e = adj.next() )
if( e->v() < e->w() )
pq.insert(*e);
}
// 创建一个并查集, 来查看已经访问的节点的联通情况
UnionFind uf = UnionFind(graph.V());
while( !pq.isEmpty() && mst.size() < graph.V() - 1 ){
// 从最小堆中依次从小到大取出所有的边
Edge<Weight> e = pq.extractMin();
// 如果该边的两个端点是联通的, 说明加入这条边将产生环, 扔掉这条边
if( uf.isConnected( e.v() , e.w() ) )
continue;
// 否则, 将这条边添加进最小生成树, 同时标记边的两个端点联通
mst.push_back( e );
uf.unionElements( e.v() , e.w() );
}
mstWeight = mst[0].wt();
for( int i = 1 ; i < mst.size() ; i ++ )
mstWeight += mst[i].wt();
}
~KruskalMST(){ }
// 返回最小生成树的所有边
vector<Edge<Weight>> mstEdges(){
return mst;
};
// 返回最小生成树的权值
Weight result(){
return mstWeight;
};
};
5.4 时间复杂度
6.最短路径
最短路径问题:从一个节点到另一个节点的最短距离
(本节为单源最短路径)
6.1 dijkstra算法
前提:图中不能有负权边
一轮操作;
二轮操作:
三轮操作:
四轮操作:
实现:
// Dijkstra算法求最短路径
template<typename Graph, typename Weight>
class Dijkstra{
private:
Graph &G; // 图的引用
int s; // 起始点
Weight *distTo; // distTo[i]存储从起始点s到i的最短路径长度
bool *marked; // 标记数组, 标记是否求得到节点i最短距离
vector<Edge<Weight>*> from; // from[i]记录最短路径中, 到达i点的边是哪一条
// 可以用来恢复整个最短路径
public:
// 构造函数, 使用Dijkstra算法求最短路径
Dijkstra(Graph &graph, int s):G(graph){
// 算法初始化
assert( s >= 0 && s < G.V() );
this->s = s;
distTo = new Weight[G.V()];
marked = new bool[G.V()];
for( int i = 0 ; i < G.V() ; i ++ ){
distTo[i] = Weight();
marked[i] = false;
from.push_back(NULL);
}
// 使用索引堆记录当前找到的到达每个顶点的最短距离
IndexMinHeap<Weight> ipq(G.V());
// 对于起始点s进行初始化
distTo[s] = Weight();
from[s] = new Edge<Weight>(s, s, Weight());
ipq.insert(s, distTo[s] );
marked[s] = true;
while( !ipq.isEmpty() ){
int v = ipq.extractMinIndex();
// distTo[v]就是s到v的最短距离
marked[v] = true;
// 对v的所有相邻节点进行更新
typename Graph::adjIterator adj(G, v);
for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() ){
int w = e->other(v);
// 如果从s点到w点的最短路径还没有找到
if( !marked[w] ){
// 如果w点以前没有访问过,
// 或者访问过, 但是通过当前的v点到w点距离更短, 则进行更新
if( from[w] == NULL || distTo[v] + e->wt() < distTo[w] ){
distTo[w] = distTo[v] + e->wt();
from[w] = e;
if( ipq.contain(w) )
ipq.change(w, distTo[w] );
else
ipq.insert(w, distTo[w] );
}
}
}
}
}
// 析构函数
~Dijkstra(){
delete[] distTo;
delete[] marked;
delete from[0];
}
// 返回从s点到w点的最短路径长度
Weight shortestPathTo( int w ){
assert( w >= 0 && w < G.V() );
assert( hasPathTo(w) );
return distTo[w];
}
// 判断从s点到w点是否联通
bool hasPathTo( int w ){
assert( w >= 0 && w < G.V() );
return marked[w];
}
// 寻找从s到w的最短路径, 将整个路径经过的边存放在vec中
void shortestPath( int w, vector<Edge<Weight>> &vec ){
assert( w >= 0 && w < G.V() );
assert( hasPathTo(w) );
// 通过from数组逆向查找到从s到w的路径, 存放到栈中
stack<Edge<Weight>*> s;
Edge<Weight> *e = from[w];
while( e->v() != this->s ){
s.push(e);
e = from[e->v()];
}
s.push(e);
// 从栈中依次取出元素, 获得顺序的从s到w的路径
while( !s.empty() ){
e = s.top();
vec.push_back( *e );
s.pop();
}
}
// 打印出从s点到w点的路径
void showPath(int w){
assert( w >= 0 && w < G.V() );
assert( hasPathTo(w) );
vector<Edge<Weight>> vec;
shortestPath(w, vec);
for( int i = 0 ; i < vec.size() ; i ++ ){
cout<<vec[i].v()<<" -> ";
if( i == vec.size()-1 )
cout<<vec[i].w()<<endl;
}
}
};
6.1.1 优化:Bellman-Ford算法
前提:图中不能有负权环
负权环:
// 使用BellmanFord算法求最短路径
template <typename Graph, typename Weight>
class BellmanFord{
private:
Graph &G; // 图的引用
int s; // 起始点
Weight* distTo; // distTo[i]存储从起始点s到i的最短路径长度
vector<Edge<Weight>*> from; // from[i]记录最短路径中, 到达i点的边是哪一条
// 可以用来恢复整个最短路径
bool hasNegativeCycle; // 标记图中是否有负权环
// 判断图中是否有负权环
bool detectNegativeCycle(){
for( int i = 0 ; i < G.V() ; i ++ ){
typename Graph::adjIterator adj(G,i);
for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() )
if( from[e->v()] && distTo[e->v()] + e->wt() < distTo[e->w()] )
return true;
}
return false;
}
public:
// 构造函数, 使用BellmanFord算法求最短路径
BellmanFord(Graph &graph, int s):G(graph){
this->s = s;
distTo = new Weight[G.V()];
// 初始化所有的节点s都不可达, 由from数组来表示
for( int i = 0 ; i < G.V() ; i ++ )
from.push_back(NULL);
// 设置distTo[s] = 0, 并且让from[s]不为NULL, 表示初始s节点可达且距离为0
distTo[s] = Weight();
from[s] = new Edge<Weight>(s, s, Weight()); // 这里我们from[s]的内容是new出来的, 注意要在析构函数里delete掉
// Bellman-Ford的过程
// 进行V-1次循环, 每一次循环求出从起点到其余所有点, 最多使用pass步可到达的最短距离
for( int pass = 1 ; pass < G.V() ; pass ++ ){
// 每次循环中对所有的边进行一遍松弛操作
// 遍历所有边的方式是先遍历所有的顶点, 然后遍历和所有顶点相邻的所有边
for( int i = 0 ; i < G.V() ; i ++ ){
// 使用我们实现的邻边迭代器遍历和所有顶点相邻的所有边
typename Graph::adjIterator adj(G,i);
for( Edge<Weight>* e = adj.begin() ; !adj.end() ; e = adj.next() )
// 对于每一个边首先判断e->v()可达
// 之后看如果e->w()以前没有到达过, 显然我们可以更新distTo[e->w()]
// 或者e->w()以前虽然到达过, 但是通过这个e我们可以获得一个更短的距离, 即可以进行一次松弛操作, 我们也可以更新distTo[e->w()]
if( from[e->v()] && (!from[e->w()] || distTo[e->v()] + e->wt() < distTo[e->w()]) ){
distTo[e->w()] = distTo[e->v()] + e->wt();
from[e->w()] = e;
}
}
}
hasNegativeCycle = detectNegativeCycle();
}
// 析构函数
~BellmanFord(){
delete[] distTo;
delete from[s];
}
// 返回图中是否有负权环
bool negativeCycle(){
return hasNegativeCycle;
}
// 返回从s点到w点的最短路径长度
Weight shortestPathTo( int w ){
assert( w >= 0 && w < G.V() );
assert( !hasNegativeCycle );
assert( hasPathTo(w) );
return distTo[w];
}
// 判断从s点到w点是否联通
bool hasPathTo( int w ){
assert( w >= 0 && w < G.V() );
return from[w] != NULL;
}
// 寻找从s到w的最短路径, 将整个路径经过的边存放在vec中
void shortestPath( int w, vector<Edge<Weight>> &vec ){
assert( w >= 0 && w < G.V() );
assert( !hasNegativeCycle );
assert( hasPathTo(w) );
// 通过from数组逆向查找到从s到w的路径, 存放到栈中
stack<Edge<Weight>*> s;
Edge<Weight> *e = from[w];
while( e->v() != this->s ){
s.push(e);
e = from[e->v()];
}
s.push(e);
// 从栈中依次取出元素, 获得顺序的从s到w的路径
while( !s.empty() ){
e = s.top();
vec.push_back( *e );
s.pop();
}
}
// 打印出从s点到w点的路径
void showPath(int w){
assert( w >= 0 && w < G.V() );
assert( !hasNegativeCycle );
assert( hasPathTo(w) );
vector<Edge<Weight>> vec;
shortestPath(w, vec);
for( int i = 0 ; i < vec.size() ; i ++ ){
cout<<vec[i].v()<<" -> ";
if( i == vec.size()-1 )
cout<<vec[i].w()<<endl;
}
}
};