Tensorflow——第一讲神经网络的计算

前言

这个系列的文章记录的是北京大学的Tensorflow课程的笔记,建议先听吴恩达的深度学习课程学习从底层实现神经网络,再听这个课程学习用框架实现神经网络。下面附上这个课程的链接:

【北京大学】Tensorflow2.0_哔哩哔哩_bilibili

一、神经网络的设计过程

以给鸢尾花分类为例:

1.搭建网络(这里搭建的是一个非常简单的网络,只有输入和输出层): 

输入是 花萼长、花萼宽、花瓣长、花瓣宽这四个特征,所以有四个输入节点。输出是三种鸢尾花各自的可能性大小,所以有三个输出节点。

2.喂入数据

X=[5.8,4.0,1.2,0.2]和对应标签0(狗尾草鸢尾)

3.前向传播

可以看出0类鸢尾的得分并不是最高的,因为参数w和b都是随机初始化的,相当于这个结果就是蒙的,我们还需要通过梯度下降一步步更新参数,使损失函数降到最低。

4.损失函数 

 5.梯度下降和反向传播

 

二、张量生成

1. 张量定义:

 2.数据类型:

int32,float32,float64,bool,string

3.创建张量:

直接打印a,会输出a的所有内容;shape=(2,) 逗号隔开了几个数字就是几维,数字是几代表这个张量里有几个元素,这里表示一维,两个元素。

其他特殊类型:

将numpy的数据类型转换为Tensor数据类型: tf. convert_to_tensor(数据名,dtype=数据类型(可选))

创建全为0的张量 tf. zeros(维度)   创建全为1的张量 tf. ones(维度) 

创建全为指定值的张量 tf. fill(维度,指定值) 

生成正态分布的随机数,默认均值为0,标准差为1  tf. random.normal(维度,mean=均值,stddev=标准差)

生成截断式正态分布的随机数 tf. random.truncated_normal(维度,mean=均值,stddev=标准差) 

三、常用函数

1.强制tensor转换为该数据类型 tf.cast(张量名,dtype=数据类型)

2.计算张量维度上元素的最小值 tf.reduce_min(张量名)

3.计算张量维度上元素的最大值 tf.reduce_max(张量名) 

 4.计算张量沿着指定维度的平均值 tf.reduce_mean(张量名,axis=操作轴)

5.计算张量沿着指定维度的和 tf.reduce_sum(张量名,axis=操作轴) 

6.tf.Variable() 将变量标记为“可训练”,被标记的变量会在反向传播 中记录梯度信息。神经网络训练中,常用该函数标记待训练参数。w = tf.Variable(tf.random.normal([2, 2], mean=0, stddev=1))

7.对应元素的四则运算:tf.add,tf.subtract,tf.multiply,tf.divide

8.平方、次方与开方:tf.square,tf.pow,tf.sqrt

9.矩阵乘:tf.matmul

10.切分传入张量的第一维度,生成输入特征/标签对,构建数据集 data=tf.data.Dataset.from_tensor_slices((输入特征, 标签)

11.

12. enumerate是python的内建函数,它可遍历每个元素(如列表、元组 或字符串),组合为:索引元素,常在for循环中使用。 enumerate(列表名) 

13.独热编码(one-hot encoding):在分类问题中,常用独热码做标签, 标记类别:1表示是,0表示非

 tf.one_hot()函数将待转换数据,转换为one-hot形式的数据输出。 tf.one_hot(待转换数据, depth=几分类)

14.

15.assign_sub 赋值操作,更新参数的值并返回。 w.assign_sub(w要自减的内容) ,调用assign_sub前,先用tf.Variable定义变量w为可训练(可自更新)。

16.返回张量沿指定维度最大值的索引 tf.argmax(张量名,axis=操作轴)

四、神经网络实现鸢尾花分类

总过程:

1.准备数据(数据为sklearn自带)

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

 2.搭建网络

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

3.参数优化

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

 4.测试效果

# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number = 0, 0
for x_test, y_test in test_db:
    # 使用更新后的参数进行预测
    y = tf.matmul(x_test, w1) + b1
    y = tf.nn.softmax(y)
    pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
    # 将pred转换为y_test的数据类型
    pred = tf.cast(pred, dtype=y_test.dtype)
    # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
    correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
    # 将每个batch的correct数加起来
    correct = tf.reduce_sum(correct)
    # 将所有batch中的correct数加起来
    total_correct += int(correct)
    # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
    total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")

 5.acc/ loss可视化

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

  • 40
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值