- 博客(30)
- 收藏
- 关注
原创 产品策划规划
工作了比较长时间做产品工作,现在总结下做产品的思路。整体做一个产品需要考虑的因素很多,可以说和项目经理比,产品管理的一部分阶段很像项目经理的工作内容,产品的目标方向不同可能思路方法不太一样,侧重点也不一样,c端产品重视的商业模式,护城河建立,自己的生态建立,和运营的配合等,毕竟c端都是以活跃度,交易额等等数据来融资,然后上市套现的,g端可能考虑复用性强,架构设计,数据问题,技术实现,交付时间问题等等。就g端,我总结出来自己的感觉总要的产品节点。产品之前就是需求,需求发现我感觉需求发现就是针对社会和市
2021-08-05 17:27:27 126
原创 深度学习-物体检测系统
图像分类,检测及分割是计算机视觉领域的三大任务。分类和检测比较容易理解,图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。对检测任务现在是分one stage和two stage,两者区别是前者不需要生成候选框,直接对目标定位,把定位问题转化为回归问题处理,后者是先生成了一系列样本的候选框,再通过卷积进行分类。就现在看来深度学习结合two stage比较多...
2018-09-09 23:45:17 1538
原创 faster-rcnn 物体检测(深度学习在物体检测的应用)
本文是2015年发表的物体检测的经典top论文。本文思路:1、目的得到feature maps。先通过conv层+pooling层+relu层,可以是vgg,得到feature maps。2、目的得到精确的proposals,提议建议图??,在feature maps上提取对应的图。在第一步基础上,先通过rpn生成region proposals。通过softmax判断anchors(...
2018-08-16 22:29:54 3248
转载 TensorFlow save-cnn
save不用重复编写程序了x = tf.placeholder(tf.float32, [None, n_input])y = tf.placeholder(tf.float32, [None, n_output])keepratio = tf.placeholder(tf.float32)# FUNCTIONS_pred = conv_basic(x, weights, bias...
2018-07-18 20:40:24 410
原创 TensorFlow - saverestore
import tensorflow as tfv1 = tf.Variable(tf.random_normal([1,2]), name="v1")v2 = tf.Variable(tf.random_normal([2,3]), name="v2")init_op = tf.global_variables_initializer()saver = tf.train.Saver()#...
2018-07-18 20:19:07 251
原创 tensorflow 卷积cnn
卷积神经网络的结构图 import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltimport input_data mnist = input_data.read_data_sets('data/', one_hot=True)trainimg = mnist.train.i...
2018-07-17 21:37:22 316
原创 TensorFlow 神经网络
import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltimport input_data mnist = input_data.read_data_sets('data/', one_hot=True)先初始化所有输入输出和参数# NETWORK TOPOLOGIESn_hidden_...
2018-07-17 20:41:58 324
原创 TensorFlow 逻辑回归
import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltimport input_datamnist = input_data.read_data_sets('data/', one_hot=True)#帮助下载数据集并且分为训练集测试集等trainimg = mnist.train....
2018-07-17 19:53:57 347
原创 TensorFlow-mnist
import numpy as npimport tensorflow as tfimport matplotlib.pyplot as plt#from tensorflow.examples.tutorials.mnist import input_dataimport input_dataprint ("packs loaded") print ("Download an...
2018-07-16 19:40:05 264
原创 TensorFlow线性回归代码
import numpy as npimport tensorflow as tfimport matplotlib.pyplot as plt# 随机生成1000个点,围绕在y=0.1x+0.3的直线周围num_points = 1000vectors_set = []for i in range(num_points): x1 = np.random.normal(0.0, 0.55)#...
2018-07-15 20:23:45 425
原创 TensorFlow-1
先定义变量再定义操作,再在一个session中进行初始化,进行计算。import tensorflow as tfa = 3# Create a variable.w = tf.Variable([[0.5,1.0]])x = tf.Variable([[2.0],[1.0]]) y = tf.matmul(w, x)#variables have to be explicitly initial...
2018-07-15 19:52:25 211
转载 Github是什么?看完你就了解一些了
要了解Github,我们首先要知道Git,Git是管理代码的工具,写代码不是件轻松的事儿,一个人写的时候已经不轻松了,一群人写就更不轻松了,但这世界上很多事都是怎么不轻松怎么来的,大部分人都会和别人一起写代码,问题在于,这么多人写一个东西,你今天写一点,我明天写一点,然后发现你写错了,又影响到了我前天写的,最后汇总的时候怎么查找错误?又在什么时候汇总?这些问题太多了。为了让写代码这件事儿美好一点,...
2018-07-03 16:46:18 665
转载 供应链设计2标准和设计步骤
主要是针对货物类型和限制,通过供应链活动,把货物每个节点分析出来。通过分析出来那些可以进行优化,可以进行修改,提高效率,通过提高效率,降低成本,进行优化供应链活动,从而完成一系列的修改。eg:保洁公司的香波供应链活动如下:设计原则:...
2018-06-23 12:08:01 2037
转载 供应链设计-SCM(杂记1基础)
供应链是一条增值链,供应链活动是信息流,物流,资金流的价值增值链。是从采购到最终的消费者的整个过程。供应链基本模型:供应链过程图:供应链需求波动效应:1、牛鞭效应2、曲棍球效应戴尔2001年的案例...
2018-06-22 23:11:35 2195
转载 rule-base机器人1
1、最基础的fi—else问答import random# 打招呼greetings = ['hola', 'hello', 'hi', 'Hi', 'hey!','hey']# 回复打招呼,random.choice意思是随机选取内容random_greeting = random.choice(greetings)# 对于“你怎么样?”这个问题的回复question = ['Ho...
2018-06-16 10:15:40 594
原创 cnn卷积神经网络
卷积神经网络可以做分类,推荐,识别等卷积神经网络由如下组成:•输入层•卷积层•激活函数•池化层•全连接层其中输入层,激活函数,全连接层都比较简单在神经网络中有讲解,以下主要说明是卷积层和池化层。1、卷积层一个图像是由长宽和rgb深度组成。如下:左面是每个深度的图像的值,中间是filter,每一个深度一个filter,这里中间是两个深度,方式是矩阵的对应项相乘,...
2018-06-13 18:07:48 390
原创 PCA降维和LDA降维
PCA降维PCA降维是为了提取有用信息,减少数据量,提高运算效率。PCA降维是利用了基于方差的降维,方差是反应样本离均值的离散程度的度量,我们的目的就是利用样本的特征统计特性,也就是方差使得样本在降维的时候可以离散开来。如果单纯只选择方差最大的方向,后续方向应该会和方差最大的方向接近重合。为了让两个字段尽可能表示更多的原始信息,我们是不希望它们之间存在(线性)相关性的。可以用两个字段的协方差表示其...
2018-06-12 10:41:15 382
原创 聚类——kmeans和dbscan
这是无监督学习算法的经典算法问题,有堆样本,要把里面相似的样本分到一组。解决:1、指定要把样本分为k簇。2、利用距离度量每个族的样本的准则。优化目标: 工作流程(假设K=2):1、先在样本中任意的指定两个点A和B,遍历所有的样本到两点距离,哪个近就认为样本是属于哪个AB点。2、再分别计算每个属于AB点的所有样本的质点,也就是各个维度取平均,这个质点是新的AB点。3、重复1。直到没有变化。缺点:1、...
2018-06-11 17:01:40 780
原创 svm
12年前svm的天下,现在是神经网络的。解题思路,通过实际问题,转换为数学表达式,找出损失函数,进行优化 迭代。svm分类,二分类(多分类)
2018-06-11 16:03:11 429
原创 产品经理的产品规划
虽然博客最近一直写的是人工智能的机器学习相关内容,但是作者本人硕士是计算机信息学的做图像sift和数据建模的。but毕业后喜欢上产品jab,a feel让别人用我做的产品是巨大的认可。。。。产品工作,简单说就是需求挖掘,三大文档撰写,脑图,axure的中保真demo,规划开发时间和进展(需要和技术ui等进行评审),产品的全周期迭代管理等,到一定阶段,就是比较高级的产品的方面的工作。这里按照工作的...
2018-06-05 23:13:39 1836
原创 模型融合-bagging,boosting,stacking
先把主要的算法进行整理,后续会对py结合算法的实践进行整理。第五弹,模型融合目的是为了提高机器学习的效果,其实就是整理几个机器算法进行参考计算后续的训练。三个模型融合思路:1、bagging,训练多个分类器,结果取平均。并列的进行训练,所有的分类器无关并行进行训练。分类:可以用于结果做vote。回归:可以对这些模型结果取平均。2、boosting,从弱学习开始加强,加权训练,这是串联的,也就说后一...
2018-05-30 16:24:02 1749
原创 py逻辑回归实例
python在机器学习方面的应用很像研究生那会用的matlab,不难理解。唯一要做的就是把数学和算法思路学好。建立一个逻辑回归模型来预测一个学生是否被大学录取。import numpy as npimport pandas as pdimport matplotlib.pyplot as plt#设置数据的路径,os.sep 根据你所处的平台,自动地采用相应的分割符号。import ospath ...
2018-05-29 09:53:29 884
原创 决策树
决策树可以做回归和分类。决策树总体思想和步骤(离散的,ID3):1、先计算每个样本的随机变量的熵值。2、再计算信息增益,也就是样本随机变量的熵值与对应样本随机变量的概率相乘再加和。3、遍历所有的样本每种随机变量的信息增益,排序,根据最大开始进行分裂。决策树的重点是分裂的随机变量是哪个。1、先从树来说明。在决策树中,有3个组成:1、根节点:第一个选择点。2、非叶子节点,中间过程。3、叶子结点:最终的...
2018-05-28 20:48:39 224
原创 AI-机器学习-监督学习-逻辑回归
很多大牛都把线性回归和逻辑回归给写在一起,我觉得还是分开写的好,更清晰。逻辑回归和线性回归虽然都是回归,但是线性回归做的是回归,逻辑回归做的是分类。接着上次博文,逻辑回归是把线性回归的目标函数转化到sigmoid函数,sigmoid函数是一个转化为0到1也就是概率的函数。既然是分类就和线性回归不一样,线性回归是利用了误差的特性,高斯函数,做的连续性密度函数,利用最大似然估计法和梯度下降法估算出来x...
2018-05-26 15:43:28 326
原创 AI-机器学习-监督学习-线性回归
回归算法是监督学习其中之一。线性回归算法是已知样本和样本对应的预测结果,求新的样本的预测结果。1、先对已知样本进行适当的处理,包括去除一些缺省值,一些不正常的值等。2、样本和结果进行了建模,如下: 其中x为样本,h为y也为样本对应的值,为系数,通过可以很好拟合y,现在要求出来的就是。后加入了非常非常关键的误差,如下:假设求的系数为矩阵,含有很多的参数值,这是需要求解的。就是要求一个直线拟合所有的已...
2018-05-25 16:29:54 403
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人