前言
数据均为作者自己科研所用,现在正整理中逐步上架,许多小萌新碰上的数
据难题我基本也碰到过,更多有趣的数据可以点击头像查看作者主页,会持续更新有趣的数
据。
如果有需要定制相关数据(如年报文本分析、百度指数等),也可以直接联
系直接联系作者。谢谢大家支持!
1.数据介绍
本数据包括各地
级市之间的空间距离、各地级市的相邻城市数据,常用于空间计量相关研究。
但在本人专业领域内,由于其良好的外生性,更常见的是用于构建外生工具变量进行内生
性检验:如傅秋子和黄益平(2018)选取“地级市到杭州的距离”为工具变量
,来控制模型的内生性;李春涛等(2020)利用所有城市的接壤城市,使用相同年度
该城市所有接壤城市金融科技发展水平的均值作为工具变量;宋敏等(2021)为了缓解
金融科技空间溢出效应的影响,进一步控制了半径500km以内非本市的金融科技公
司数目(FinN500)或接壤城市平均金融科技发展水平(MeanFi
ntech)。
当然其用途远不止以上距离,还可用于二次构建形成新的
指标等。
[1]宋敏,周鹏和司海涛.《金融科技与企业全要素生产
率——“赋能”和信贷配给的视角》.中国工业经济,期04(2021年):
138–5
5.
[2]李春涛,闫续文,宋敏和杨威.《金融科技与企业
创新——新三板上市公司的证据》.中国工业经济,期01(2020年):8
1–9
8.
[3]傅秋子和黄益平.《数字金融对农村金融需求的异质性影响
——来自中国家庭金融调查与北京大学数字普惠金融指数的证据》.金融研究,期1
1(2018年):68–8
4.
2.数据包括
2.1地级市的空间距
离/地理距离矩阵
数据来源
作者在该网站利用Python爬取全国共
679个城市的经纬度坐标后,计算得到各城市间的地理距离。
数据内容
一共涉及
679个地级市各自距离(KM)(应该是最全)。根据研究需要,作者已整理好两个数据
结构,包括:
空间距离矩阵xlsx+dta格式(图1)
空间距离面板数
据xlsx+dta格式(图2)
图1
图2
2.
2地级市相邻/邻接0-1矩阵
数据来源
请师兄用Geoda软件所计算。
数据内容
包括286个地级市之间是否相邻的0-1变量。根据研究目的不同,
同样已经整理好以下两种数据结构:
0-1矩阵模式.dta+xlsx
(图3)
面板模式.dta+xlsx(图4)
图3
图4
3.数据获取
也可以进作者主页查看“分享”,没有手续费会更便
宜~
数据均为作者自己科研所用,现在正整理中逐步上架,许多小萌新
碰上的数据难题我基本也碰到过,更多有趣的数据可以点击头像查看作者主页,会持续更新
有趣的数据。
如果有需要定制相关数据(如年报文本分析、百度指数等),也可
以直接联系直接联系作者。谢谢大家支持!
下载链接:https://download.csdn.net/download/weixin_45892228/89112229
点击下载:679个【超全】地级市地理距离矩阵+286个地级市0-1相邻矩阵