倾向得分匹配法PSM代码(包括近邻匹配、核匹配、半径匹配、马氏匹配、样条匹配)

拿到了等于学会psm所有过程!包括PSM(近邻匹配、核匹配、半径匹配、马氏匹配、
样条匹配等等最全)以及共同支撑假设检验、平衡性假设检验作图等


倾向评分匹配,
简称PSM,是使用非实验数据或观测数据进行干预效应分析的一类统计方法。倾向得分匹
配的理论框架是“反事实推断模型”。“反事实推断模型”假定任何因果分析的研究对象都
有两种条件下的结果:观测到的和未被观测到的结果。如果我们说“A是导致B的原因”,
用的就是一种“事实陈述法”。#F8L1|&y4~

0?%@7o
#P+t/@._
倾向评分匹配(PropensityScoreMat
ching,简称PSM)是一种统计学方法,用于处理观察研究(Observatio
nalStudy)的数据。在观察研究中,由于种种原因,数据偏差(bias)和混
杂变量(confoundingvariable)较多,倾向评分匹配的方法正是为
了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。这种方法最
早由PaulRosenbaum和DonaldRubin在1983年提出,一般
常用于医学、公共卫生、经济学等领域。以公共卫生学为例,假设研究问题是吸烟对于大
众健康的影响,研究人员常常得到的数据是观察研究数据,而不是随机对照实验数据(Ra
ndomizedControlledTrialdata),因为吸烟者的行为
和结果,以及不吸烟者的行为和结果,是很容易观察到的。但如果要进行随机对照实验,招
收大量被试,然后随机分配到吸烟组和不吸烟组,这种实验设计不太容易实现,也并不符合
科研伦理。这种情况下观察研究是最合适的研究方法。但是面对最容易获得的观察研究数据
,如果不加调整,很容易获得错误的结论,比如拿吸烟组健康状况最好的一些人和不吸烟组
健康状况最不好的一些人作对比,得出吸烟对于健康并无负面影响的结论。从统计学角度分
析原因,这是因为观察研究并未采用随机分组的方法,无法基于大数定理的作用,在实验组
和对照组之间削弱混杂变量的影响,很容易产生系统性的偏差。倾向评分匹配就是用来解决
这个问题,消除组别之间的干扰因素。
   

下载链接:https://download.csdn.net/download/weixin_45892228/89115816

点击下载:倾向得分匹配法PSM代码(包括近邻匹配、核匹配、半径匹配、马氏匹配、样条匹配)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值