Stream流常用操作
准备工作
作家类
@Data
@NoArgsConstructor
@AllArgsConstructor
@EqualsAndHashCode// 用于后期的去重使用
public class Author {
//id
private Long id;
//姓名
private String name;
//年龄
private Integer age;
//简介
private String intro;
//作品
private List<Book> books;
public static List<Author> getAuthors() {
//数据初始化
Author author = new Author(1L,"蒙多",33,"一个从菜刀中明悟哲理的祖安人",null);
Author author2 = new Author(2L,"亚拉索",15,"狂风也追逐不上他的思考速度",null);
Author author3 = new Author(3L,"易",14,"是这个世界在限制他的思维",null);
Author author4 = new Author(3L,"易",14,"是这个世界在限制他的思维",null);
//书籍列表
List<Book> books1 = new ArrayList<>();
List<Book> books2 = new ArrayList<>();
List<Book> books3 = new ArrayList<>();
books1.add(new Book(1L,"刀的两侧是光明与黑暗","哲学,爱情",88,"用一把刀划分了爱恨"));
books1.add(new Book(2L,"一个人不能死在同一把刀下","个人成长,爱情",99,"讲述如何从失败中明悟真理"));
books2.add(new Book(3L,"那风吹不到的地方","哲学",85,"带你用思维去领略世界的尽头"));
books2.add(new Book(3L,"那风吹不到的地方","哲学",85,"带你用思维去领略世界的尽头"));
books2.add(new Book(4L,"吹或不吹","爱情,个人传记",56,"一个哲学家的恋爱观注定很难把他所在的时代理解"));
books3.add(new Book(5L,"你的剑就是我的剑","爱情",56,"无法想象一个武者能对他的伴侣这么的宽容"));
books3.add(new Book(6L,"风与剑","个人传记",100,"两个哲学家灵魂和肉体的碰撞会激起怎么样的火花呢?"));
books3.add(new Book(6L,"风与剑","个人传记",100,"两个哲学家灵魂和肉体的碰撞会激起怎么样的火花呢?"));
author.setBooks(books1);
author2.setBooks(books2);
author3.setBooks(books3);
author4.setBooks(books3);
List<Author> authorList = new ArrayList<>(Arrays.asList(author,author2,author3,author4));
return authorList;
}
}
书籍类
@Data
@AllArgsConstructor
@NoArgsConstructor
@EqualsAndHashCode//用于后期的去重使用
public class Book {
//id
private Long id;
//书名
private String name;
//分类
private String category;
//评分
private Integer score;
//简介
private String intro;
}
中间操作
filter
可以对流中的元素进行条件过滤,符合过滤条件的才能继续留在流中。
public static void main(String[] args) {
// 打印所有年龄小于18的作家的名字,并且要注意去重
List<Author> authors = Author.getAuthors();
authors.stream() // 将authors转化为stream流
.filter(author -> author.getAge() < 18) // 筛选小于18的
.forEach(author -> System.out.println(author.getName())); // 遍历打印姓名
}
map
可以对流中的数据进行计算或转换
authors.stream()
.map(author -> author.getAge())
.map(age->age+10)
.forEach(age-> System.out.println(age));
将流中author对象转换为 age
将流中的数据加10
distinct
可以对流中的重复元素进行去重
authors.stream() // 将authors转化为stream流
.distinct() // 去重
sorted
可以对流中的元素进行排序
// 对流中的元素按照年龄进行升序排序,并且要求不能有重复的元素。
authors.stream()
.distinct()
.sorted((o1, o2) -> o1.getAge()-o2.getAge())
.forEach(author -> System.out.println(author.getAge()));
limit
可以设置流的最大长度,超过部分将被抛弃。
authors.stream()
.limit(2)
.forEach(author -> System.out.println(author.getName()));
skip
跳过流中前n个元素返回剩下的元素
// 打印除了年龄最大的作家外的其他作家,要求不能有重复元素,并且按照年龄降序排序。
List<Author> authors = getAuthors();
authors.stream()
.distinct()
.sorted((o1, o2) -> o2.getAge()-o1.getAge())
.skip(1)
.forEach(author -> System.out.println(author.getName()));
flatMap
- map 是对流元素进行转换,flatMap 是对流中的元素(数组)进行平铺后合并,即对流中的每个元素平铺后又转换成为了 Stream 流。
- map 适用于对每个元素进行简单的转换,flatMap 适用于对数组流进行平铺后合并,两个方法的应用场景不一样。
- map只能把一个对象转换成另一个对象来作为流中的元素。而flatMap可以把一个对象转换成多个对象作为流中的元素。
List<Author> authors1 = Author.getAuthors();
// 获取authors的book集合
// 用map
authors1.stream()
.distinct()
.map(author -> author.getBooks())
.collect(Collectors.toList());
// 用flatMap
List<Author> authors2 = Author.getAuthors();
authors2.stream()
.distinct()
.flatMap(author -> author.getBooks().stream())
.collect(Collectors.toList());
map把流中的author对象转化为book集合
flatmap把author对象中的book集合里每一本书转为流中的元素
stream流终结操作
forEach
对流中的元素进行遍历操作,我们通过传入的参数去指定对遍历到的元素进行具体操作
例: 输出所有作家的名字
List<Author> authors = Author.getAuthors();
authors.stream()
.map(author -> author.getName())
.forEach(s -> System.out.println(s));
count
可以用来获取当前流中元素的个数。
long count = authors.stream()
.map(author -> author.getName())
.distinct()
.count();
System.out.println(count);// 3
max&min
可以获取流中的最值
Optional<Integer> max = authors.stream()
.flatMap(author -> author.getBooks().stream())
.map(book -> book.getScore())
.max((o1, o2) -> o1 - o2);
System.out.println(max); // Optional[100]
最小值同理
collect
把当前流转换为一个集合
将书籍转为一个list集合
List<Author> authors = Author.getAuthors();
List<Book> collect = authors.stream()
.flatMap(author -> author.getBooks().stream())
.distinct()
.collect(Collectors.toList());
将书籍名转为set集合
Set<String> collect1 = authors.stream()
.flatMap(author -> author.getBooks().stream())
.distinct()
.map(book -> book.getName())
.collect(Collectors.toSet());
将作者流转为map集合 key为作者名,value为书籍集合
authors.stream()
.distinct()
.collect(Collectors.toMap(author -> author.getName(), author -> author.getBooks()));
查找与匹配
anyMatch
可以用来判断是否有任意符合匹配条件的元素,返回值类型为boolean
List<Author> authors = Author.getAuthors();
boolean flag = authors.stream()
// 判断是否有年龄大于29的
.anyMatch(author -> author.getAge() > 29);
System.out.println(flag);// true
allMatch
可以用来判断是否都符合条件,返回值类型为boolean。都符合返回true
List<Author> authors = Author.getAuthors();
boolean flag = authors.stream()
// 判断是否所有人都成年
.allMatch(author -> author.getAge() >= 18);
System.out.println(flag);
noneMatch
可以判断是否都不符合条件,返回值类型为boolean。都不符合返回true
List<Author> authors = Author.getAuthors();
boolean flag = authors.stream()
// 作者年龄是否都不 大于100
.noneMatch(author -> author.getAge() > 100);
System.out.println(flag);// true
findAny
获取流中的任意一个元素。该方法没有办法保证获取的一定是流中的第一个
元素。
例子:
获取任意一个年龄大于18的作家,如果存在就输出他的名字
// 获取任意一个年龄大于18的作家,如果存在就输出他的名字
List<Author> authors = getAuthors();
Optional<Author> optionalAuthor = authors.stream()
.filter(author -> author.getAge()>18)
.findAny();
// ifPresent 如果有数据
optionalAuthor.ifPresent(author -> System.out.println(author.getName()));
findFirst
获取流中的第一个元素。
例子:
获取一个年龄最小的作家,并输出他的姓名。
// 获取一个年龄最小的作家,并输出他的姓名。
List<Author> authors = getAuthors();
Optional<Author> first = authors.stream()
.sorted((o1, o2) -> o1.getAge() - o2.getAge())
.findFirst();
first.ifPresent(author -> System.out.println(author.getName()));
reduce归并
流中的数据按照你指定的计算方式计算出一个结果。
reduce的作用是stream中的元素给组合起来,我们可以传入一个初始值,它会按照我们的计算方式依次拿流中的元素和初始化值进行计算,计算结果再和后面的元素计算。
reduce两个参数的重载形式内部的计算方式如下:
其中identity就是我们可以通过方法参数传入的初始值,accumulator的apply具体进行什么计算也是我们通过方法参数来确定的。
// 使用reduce求所有作者中年龄的最大值
List<Author> authors = Author.getAuthors();
Integer max = authors.stream()
.map(author -> author.getAge())
.reduce(Integer.MIN_VALUE, (result, element) -> result < element ? element : result);
System.out.println(max);
// 使用reduce求所有作者年龄的和
Integer sum = authors.stream()
.distinct()
.map(author -> author.getAge())
.reduce(0, (result, element) -> result + element);
System.out.println(sum);
// 使用reduce求所有作者中年龄的最小值
Integer min = authors.stream()
.map(author -> author.getAge())
.reduce(Integer.MAX_VALUE, (result, element) -> result > element ? element : result);
System.out.println(min);
最大值
和
最小值
reduce一个参数的重载形式内部的计算方式如下:
这个相当于把流中第一个元素当成初始值
如果用一个参数的重载方法去求最小值代码如下:
// 使用reduce求所有作者中年龄的最小值
List<Author> authors = getAuthors();
Optional<Integer> minOptional = authors.stream()
.map(author -> author.getAge())
.reduce((result, element) -> result > element ? element : result);
minOptional.ifPresent(age-> System.out.println(age));
注意事项
- 惰性求值(如果没有终结操作,没有中间操作是不会得到执行的)
- 流是一次性的(一旦一个流对象经过一个终结操作后。这个流就不能再被使用)
- 不会影响原数据(我们在流中可以多数据做很多处理。但是正常情况下是不会影响原来集合中的元素的。这往往也是我们期望的)