如何使用studio layout inspector

Android Studio 的 Layout Inspector 是一个强大的工具,帮助开发者在运行时检查和调试应用程序的 UI 布局。你可以查看布局的层次结构、各视图的属性、大小、位置等,从而帮助定位和解决 UI 问题。

以下是如何使用 Layout Inspector 的详细步骤:

1. 启动 Android Studio 并运行应用

  1. 打开 Android Studio。
  2. 使用 Android Virtual Device (AVD) 模拟器或者将应用安装到连接的物理设备上。
  3. 运行你的应用程序,使其在模拟器或设备上处于活动状态。

2. 打开 Layout Inspector

要在 Android Studio 中打开 Layout Inspector:

  1. 工具栏方法

    • 点击 Android Studio 窗口右上角的 “Layout Inspector” 按钮(通常位于 Profiler 工具旁边的 “View” 菜单中)。
  2. 菜单方法

    • 也可以通过菜单导航到 “View” > “Tool Windows” > “Layout Inspector” 来打开它。
  3. 在布局中选择 Activity

    • 选择你想要调试的 Activi
### 合适于Jetson平台部署的YOLO开源项目 对于希望在NVIDIA Jetson平台上部署YOLO模型的应用开发者而言,有几个优秀的开源项目可以考虑。这些项目不仅提供了高效的推理性能优化,还针对Jetson硬件特性进行了特别调整。 #### 1. YOLOv4-Tiny TensorRT 实现 此版本通过TensorRT加速框架对YOLOv4-tiny网络结构做了专门优化,在保持较高检测精度的同时显著提升了运行速度[^3]。该实现支持多种输入分辨率,并且能够充分利用Jetson系列设备中的GPU计算能力来加快推断过程。 #### 2. yolov5-jetson-nano 这是一个专门为Jetson Nano设计并测试过的YOLOv5移植版。它简化了安装流程并通过预训练权重文件使得快速上手变得容易。此外,该项目文档详尽,涵盖了从环境配置到实际应用开发所需的各种细节说明[^4]。 #### 3. DeepStream SDK集成YOLO插件 DeepStream是由NVIDIA推出的一个用于构建高性能视频分析应用程序的强大工具集。其中包含了可以直接使用的YOLO目标检测插件,允许用户轻松创建基于边缘AI的产品原型或生产级解决方案。由于其高度定制化的API接口以及良好的社区支持,成为了很多专业人士首选方案之一[^5]。 ```python import jetson.inference import jetson.utils net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5) camera = jetson.utils.videoSource("/dev/video0") # '/dev/video0' for V4L2 display = jetson.utils.videoOutput("display://0") # 'my_video.mp4' for file while display.IsStreaming(): img = camera.Capture() detections = net.Detect(img) display.Render(img) display.SetStatus("Object Detection | Network {:.0f} FPS".format(net.GetNetworkFPS())) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值