- 博客(69)
- 资源 (3)
- 收藏
- 关注
原创 遥感大模型
定义:遥感大模型是利用卷积神经网络、循环神经网络、自注意力机制、Transformer 等先进的深度学习结构,通过对大规模遥感数据进行预训练,结合迁移学习与领域适配技术,实现对地物精细分类、多尺度目标检测、高精度语义分割以及多时相变化检测等任务的智能化处理的模型。特点多模态数据融合:能够融合光学、SAR、LiDAR 等遥感数据,以及文本、音频、视频、矢量数据等不同模态的数据,弥补单一模态的缺陷,使模型对遥感信息的理解更加全面和准确,从而提升模型的泛化性和表示能力,更好地应对复杂的遥感应用场景。
2025-05-26 00:30:00
954
原创 空天大模型实践
空天大模型的实践已从技术验证迈向规模化应用,天基与地面模型的协同将进一步推动空天信息服务的实时化、智能化。未来需持续突破模型轻量化、多模态融合及生态开放等挑战,以实现更广泛的社会经济价值。
2025-05-26 00:15:00
424
原创 空天大模型详解
空天大模型是指面向空天信息领域(如卫星遥感、导航、气象等)设计的多模态人工智能模型,能够处理海量遥感数据、多传感器信息及跨时空分析任务。多模态融合:整合可见光、雷达、热红外、多光谱等多源遥感数据,构建统一表征空间,例如“空天·灵眸”3.0版支持航空、卫星及无人机数据的自动化解译。轻量化与高效推理:针对星载计算场景,采用分层量化、跨模态蒸馏技术压缩模型参数(如JigonGPT从1.02B压缩至0.23B,性能仅牺牲5.2%)18,并通过热传导架构提升计算速度2.4倍。神经符号结合。
2025-05-25 00:30:14
865
原创 多模态大模型的实践
多模态大模型的实践已从技术优化延伸至行业深度渗透,其核心在于跨模态协同、轻量化部署与数据创新。未来,随着量子计算、边缘智能等技术的成熟,多模态模型将进一步推动医疗、教育、工业等领域的智能化转型,但需平衡性能提升与伦理治理,实现可持续发展。
2025-05-25 00:29:42
950
原创 Docker Swarm配置
Docker是目前应用部署常用方式,当对Docker方式部署的应用进行扩容时,一台服务器资源不足支撑应用扩容,就需要在多台物理服务器之间建立集群供应用扩容,就会使用到Docker Swarm。
2025-05-24 17:37:57
769
原创 多模态大模型详解
多模态大模型是指能够同时处理和理解文本、图像、音频、视频、传感器数据等多种模态信息的AI模型。跨模态语义对齐:通过预训练技术(如CLIP、GPT-4V)实现不同模态数据的统一表征,例如将图像特征与文本描述映射到同一语义空间。多模态生成与推理:支持图文生成(如DALL-E)、视频问答、语音合成等任务,并基于上下文进行动态决策(如自动驾驶中的环境感知与路径规划)。动态融合与可解释性:利用注意力机制、神经符号系统等技术,提升跨模态交互的透明性,例如在伪造检测中生成可解释的文本描述。
2025-05-24 17:14:31
648
原创 多模态智能体架构
多模态智能体架构的核心在于跨模态语义对齐与动态上下文推理。未来随着多模态大模型与具身智能的发展,此类架构将更注重实时性、可解释性及与物理世界的深度交互。
2025-05-24 17:12:33
1004
原创 大模型的知识处理
大模型对知识的处理本质是基于统计的模式匹配与生成,而非人类的理解或记忆。它在广泛领域展现强大的应用潜力,但需结合外部验证、知识库和人类监督来弥补其局限性。未来的发展将聚焦于提升知识可靠性、动态更新能力和多模态整合。
2025-05-18 07:48:40
1022
原创 C/C++语言代码安全漏洞分析
/ 可能发生整数溢出 char *buffer = malloc(total_size);// 如果 total_size 为负数(由于溢出),可能导致内存分配错误。// ... 一些操作,可能没有释放 buffer }char *user_input = ...;// 获取用户输入的字符串 printf(user_input);// 存在格式化字符串漏洞。// 危险函数,可能导致缓冲区溢出。
2025-05-12 21:57:16
486
原创 Docker、Docker-compose、K8s、Docker swarm之间的区别
docker-compose可以使得多个容器只通过一个文件来管理当前主机上的多个容器,这个文件中包含需要启动的容器信息,如名称、配置等信息,通过docker-compose up即可根据该文件的配置信息启动对应的多个容器。例如可以通过mysql镜像构建一个运行mysql的容器,既可以直接进入该容器命令行访问mysql服务,也可以在创建容器时将相关端口映射到宿主机对应端口远程访问。k8s是可以管理、监控多个主机上的容器的工具,如果容器异常可以重新给用户启动一个新容器,也可以提供个容器之间资源等的负载均衡。
2025-05-10 22:48:14
857
原创 大模型的RAG技术系列(三)
通过增强检索和生成过程的集成,检索增强生成将在未来的 LLM 中发挥关键作用。该领域的预期发展将促成这些组件实现更无缝且更复杂的融合,使 LLM 能够在更广泛的应用和行业中提供高度准确且符合上下文的输出。随着 RAG 的不断发展,我们可以预测其在新的领域中的应用,例如个性化教育,它可以根据个人需求定制学习体验,再例如高级研究工具,它能够为复杂的调查提供精准而全面的信息检索。集成文本、图像和其他数据类型的多模式 RAG 模型的开发将扩展并开启更多可能性,从而使 LLM 比以往更加全面和强大。
2025-05-10 12:11:40
526
原创 大模型的RAG技术系列(二)
开发人员使用 RAG 体系结构创建的 AI 系统更准确、更可靠且更通用,可广泛应用于各个行业和任务。检索增强生成是一种适应性强、用途广泛的 AI 体系结构,在各个领域和行业都有广泛的用例。
2025-05-09 10:23:02
890
原创 大模型调优方法与注意事项
大模型调优(Fine-tuning)是指对预训练的大型语言模型(如GPT、BERT、LLaMA等)进行二次训练,使其适应特定任务或领域的过程。:使用参数高效方法(LoRA/QLoRA)、梯度检查点(Gradient Checkpointing)。:量化+LoRA,显存需求极低(如用4-bit量化训练65B模型)。:通常比预训练更小(例如1e-5到1e-4),避免破坏预训练知识。:跟踪损失函数、任务指标(如BLEU、ROUGE、准确率)。:权衡计算资源与性能(如7B、13B、70B参数模型)。
2025-05-08 18:54:01
1293
原创 静态代码检测规则配置
SonarQube:创建定制化质量门禁(Quality Profile),按模块启用规则(如。:统计高频误报场景,调整规则逻辑或增强代码可分析性(如减少指针强制转换)通过以上策略,可将规则匹配准确率提升30%-50%,同时降低维护成本。:通过规则集(Rule Set)统一编码规范(如命名风格、注释要求)建立规则评审流程:新规则需通过代码样例测试(Pass/Fail用例)初期聚焦高风险规则(如SQL注入、内存越界),逐步扩展至代码风格。:启用通用安全规则(如空指针检查、内存泄漏检测),Java限制类复杂度)
2025-05-06 00:15:00
432
原创 静态分析工具优化技巧
基于工具中间模型(如ESLint的AST、Phan的PHP-AST)编写自定义规则,通过XQuery或插件扩展检测逻辑。luacheck支持通过注释或配置文件定义全局变量,避免误报。
2025-05-06 00:15:00
1253
原创 提高代码质量减少误报
使用SonarQube聚合FindBugs(字节码分析)、PMD(源码分析)、Checkstyle(规范检查)等工具结果,通过权重算法筛选高置信度问题.- 根据项目需求禁用无关规则(如嵌入式开发禁用动态内存分配检测),调整灵敏度阈值(如将空指针检查从“可能”改为“明确”)。- **分阶段实施**:初期聚焦高严重性规则(如安全漏洞、空指针),逐步扩展到规范检查。- **效果评估**:通过缺陷密度(每千行代码缺陷数)、误报率等指标持续优化流程。- 通过聚类算法识别误报特征(如特定函数或模块高频误报)。
2025-05-05 00:15:00
540
原创 代码审查流程改进方法
通过上述方法,可将代码审查效率提升30%-50%,同时降低20%-40%的后期维护成本。搭建自动化流水线,集成静态分析(SonarQube)、动态测试(单元测试)和符号执行工具,覆盖多维度质量验证。使用自动化工具(如SonarQube、ESLint)集成到CI/CD流程中,自动检测代码异味和规范问题。设定审查者、提交者、管理者角色,明确各阶段任务(如审查者需提出可执行建议,提交者需及时响应).收集审查耗时、缺陷检出率等指标,分析流程瓶颈(如某类问题反复出现需优化规则)。
2025-05-05 00:15:00
650
原创 如何降低静态代码检测误报率
为降低静态代码检测误报率,可采取以下综合策略,结合技术优化与流程管理:精细化规则筛选规则上下文感知质量门禁与编译后测试符号执行与约束求解代码复杂度控制持续集成流程集成误报模式学习动态规则调整
2025-05-03 00:15:00
304
原创 静态代码检测误报原因分析
误报本质是工具精度与效率的权衡结果。降低误报需结合技术优化(如引入符号执行、机器学习分类)与流程改进(如分阶段规则启用、误报反馈闭环)。我推荐一款国产静态代码检测工具(库博-Cobot系统检测工具),库博系列工具是北京北大软件工程股份有限公司(北京大学软件工程国家工程研究中心实体化运行企业),自2011年立项,经过十多年深耕专业领域研发而成的系列检测工具,通过多项国内外认证,国内领先的软件安全检测工具,并定期校准规则库适配业务场景。
2025-05-03 00:15:00
436
原创 DAST和SAST区别
DAST:在应用程序运行时进行测试,通过模拟攻击来识别漏洞。它是一种黑盒测试技术,不依赖源代码或内部架构信息。SAST:在应用程序静态状态下,通过分析源代码或二进制代码来检测安全漏洞。它是一种白盒测试技术,需要访问应用程序的源代码。DAST和SAST各有侧重,通常建议结合使用以实现更全面的安全测试。DAST从外部视角发现运行时漏洞,适合后期测试;SAST从内部代码层面提前发现潜在问题,适合开发阶段。两者结合可以有效减少误报和漏报,提高软件的整体安全性。
2025-05-02 00:15:00
467
原创 动态应用程序安全测试(DAST)
软件动态安全测试即动态应用程序安全测试(DAST),是在应用程序运行时通过模拟攻击来识别漏洞的过程,是一种黑盒测试技术。
2025-05-01 00:15:00
883
原创 RSYNC命令使用详解
rsync 有几种传输方式:本地传输 rsync [OPTION]... SRC DEST使用一个远程shell程序(如)来实现将本地机器的内容拷贝到远程机器。当DST路径地址包含单个冒号":"分隔符时启动该模式。从本地机器拷贝文件到远程rsync服务器中。当DST路径信息包含"::"分隔符时启动该模式。
2025-04-28 15:35:09
1096
原创 RSYNC详解
rsync**是一款开源,快速,多功能的可实现增量的本地或远程的数据镜像同步备份的优秀工具。在同步备份时,默认情况下,rsync通过其独特的“quick check”算法,仅同步大小或者最后修改时间发生变化的文件或目录(也可根据权限,属主等变化同步,需要制定参数)。提示:传统的cp,scp工具拷贝每次均为完整拷贝,而rsync除了完整拷贝,还具备增量拷贝的功能,因此从此性能及效率上更胜一筹。rsync的功能强大,现只做基础的介绍,有兴趣的的可以提问,我们继续探讨。
2025-04-28 15:32:54
749
原创 获取linux内存、cpu、磁盘IO等信息脚本
echo "向设备发起的I/O请求队列长度平均值"$disk_sda_avgqu_sz。echo "向设备发起I/O请求的CPU时间百分占比:"$disk_sda_util。echo "CPU 15分钟前到现在的负载平均值:"$cpu_load_15min。echo "每次向设备发起的I/O请求平均时间:"$disk_sda_await。echo "CPU 5分钟前到现在的负载平均值:"$cpu_load_5min。echo "CPU 1分钟前到现在的负载平均值:"$cpu_load_1min。
2025-04-27 09:00:33
637
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人