去北京前做的这个题,一直木有A。。。因为有一些情况纠结了,见下图。
黄色的盘子是第一个放的。这样的话,其他盘盘都把它的边缘给覆盖掉了,但是它依然是可见的!
这点需要处理下。
我的做法是,求圆和圆相交的交点,然后计算交点在某个圆内,按极角排序在同一个圆周上的点(记得去重),然后计算每小段弧的中点,然后看这个中点在几个圆盘里,记录这个点和对应的id(可以记成一个点一个id)。最后扫一遍中点,未被遮住的就算到答案里。
另外需要特殊处理的就是,如果一个盘盘未被覆盖,就是它是完整的,或者它完全被覆盖,这样的话计算交点是算不出来的,需要特判。
精度开12-15都没问题,开11就WA了。
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <limits.h>
#include <string.h>
#include <string>
#include <algorithm>
#define MID(x,y) ( ( x + y ) >> 1 )
#define L(x) ( x << 1 )
#define R(x) ( x << 1 | 1 )
#define FOR(i,s,t) for(int i=(s); i<(t); i++)
#define BUG puts("here!!!")
#define STOP system("pause")
#define file_r(x) freopen(x, "r", stdin)
#define file_w(x) freopen(x, "w", stdout)
using namespace std;
const int MAX = 110;
const double eps = 1e-12;
bool dy(double x,double y) { return x > y + eps;} // x > y
bool xy(double x,double y) { return x < y - eps;} // x < y
bool dyd(double x,double y) { return x > y - eps;} // x >= y
bool xyd(double x,double y) { return x < y + eps;} // x <= y
bool dd(double x,double y) { return fabs( x - y ) < eps;} // x ==
struct point{
double x, y;
point(){}
point(double xx, double yy):x(xx), y(yy){}
bool operator==(const point &a)
{
return dd(a.x, x) && dd(a.y, y);
}
void get()
{
scanf("%lf%lf", &x, &y);
}
};
double crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向 顺时针是正
{
return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y);
}
double disp2p(point a,point b) // a b 两点之间的距离
{
return sqrt( ( a.x - b.x ) * ( a.x - b.x ) + ( a.y - b.y ) * ( a.y - b.y ) );
}
double disp2p_sqr(point a,point b)
{
return ( ( a.x - b.x ) * ( a.x - b.x ) + ( a.y - b.y ) * ( a.y - b.y ) );
}
point l2l_inst_p(point u1,point u2,point v1,point v2)
{
point ans = u1;
double t = ((u1.x - v1.x)*(v1.y - v2.y) - (u1.y - v1.y)*(v1.x - v2.x))/
((u1.x - u2.x)*(v1.y - v2.y) - (u1.y - u2.y)*(v1.x - v2.x));
ans.x += (u2.x - u1.x)*t;
ans.y += (u2.y - u1.y)*t;
return ans;
}
struct NODE{
point p;
int id;
};
struct circle{
point c;
double r;
int id;
void get()
{
c.get();
scanf("%lf", &r);
}
};
circle cir[MAX];
NODE a[MAX*MAX*2];
point p[MAX][MAX*MAX*2];
int len[MAX];
bool c2c_inst(point a,double r1,point b,double r2)
{
if( xy(disp2p(a,b),r1+r2) && dy(disp2p(a,b),fabs(r1 - r2)) )
return true;
return false;
}
void l2c_inst_p(point c,double r,point l1,point l2,point &p1,point &p2)
{
point p = c;
double t;
p.x += l1.y - l2.y;
p.y += l2.x - l1.x;
p = l2l_inst_p(p,c,l1,l2);
t = sqrt(r*r - disp2p(p,c)*disp2p(p,c))/disp2p(l1,l2);
p1.x = p.x + (l2.x - l1.x)*t;
p1.y = p.y + (l2.y - l1.y)*t;
p2.x = p.x - (l2.x - l1.x)*t;
p2.y = p.y - (l2.y - l1.y)*t;
}
void c2c_inst_p(point c1,double r1,point c2,double r2,point &p1,point &p2)
{
point u,v;
double t;
t = (1 + (r1*r1 - r2*r2)/disp2p(c1,c2)/disp2p(c1,c2))/2;
u.x = c1.x + (c2.x - c1.x)*t;
u.y = c1.y + (c2.y - c1.y)*t;
v.x = u.x + c1.y - c2.y;
v.y = u.y - c1.x + c2.x;
l2c_inst_p(c1,r1,u,v,p1,p2);
}
point C;
bool cmp(const point& a,const point& b)
{
double t1 = atan2(a.y - C.y, a.x - C.x);
double t2 = atan2(b.y - C.y, b.x - C.x);
if( dd(t1, t2) ) return xy(fabs(a.x),fabs(b.x));
return xy(t1, t2);
}
bool cmp_equal(point &a, point &b)
{
return dd(a.x, b.x) && dd(a.y, b.y);
}
bool cmp_NODE(NODE a, NODE b)
{
if( a.id == b.id )
{
if( dd(a.p.x, b.p.x) )
return xy(a.p.y, b.p.y);
return xy(a.p.x, b.p.x);
}
return a.id < b.id;
}
bool cmp_NODE_equal(NODE a, NODE b)
{
return dd(a.p.x, b.p.x) && a.id == b.id && dd(a.p.y, b.p.y);
}
point foot_line(point a,point l1,point l2) //ac在l1l2的逆时针方向
{
point c;
c.x = a.x - l2.y + l1.y;
c.y = a.y + l2.x - l1.x;
return c;
}
bool inst[MAX];
bool see[MAX];
point getmid(point a, point b, circle &c)
{
point mid = point((a.x+b.x)/2, (a.y+b.y)/2);
if( mid == c.c )
mid = foot_line(c.c, a, b);
point p1, p2;
l2c_inst_p(c.c, c.r, c.c, mid, p1, p2);
return dy(crossProduct(b, a, p1), 0) ? p2 : p1;
}
bool c2c_ainb(point a,double r1,point b,double r2)
{
return xyd(disp2p(a,b),r2 - r1); //a在b中,如果是包括内切,用xyd
}
bool check(NODE a, int n)
{
FOR(i, a.id+1, n)
if( xy(disp2p_sqr(a.p, cir[i].c), cir[i].r*cir[i].r) )
return false;
return true;
}
bool check_cover_all(circle c, int n)
{
FOR(i, c.id+1, n)
if( c2c_ainb(c.c, c.r, cir[i].c, cir[i].r) )
return false;
return true;
}
int solve(int n)
{
int sum = 0;
memset(inst, false, sizeof(inst));
memset(len, 0, sizeof(len));
FOR(i, 0, n)
{
FOR(k, i+1, n)
if( c2c_inst(cir[i].c, cir[i].r, cir[k].c, cir[k].r) )
{
point a, b;
inst[i] = inst[k] = true;
c2c_inst_p(cir[i].c, cir[i].r, cir[k].c, cir[k].r, a, b);
p[i][len[i]++] = p[k][len[k]++] = a;
p[i][len[i]++] = p[k][len[k]++] = b;
}
}
int l = 0;
FOR(i, 0, n)
{
C = cir[i].c;
sort(p[i], p[i]+len[i], cmp);
len[i] = unique(p[i], p[i]+len[i], cmp_equal) - p[i];
p[i][len[i]] = p[i][0];
FOR(k, 0, len[i])
{
point t = getmid(p[i][k], p[i][k+1], cir[i]);
a[l].p = t;
a[l++].id = i;
FOR(j, 0, n)
if( xy(disp2p_sqr(t, cir[j].c), cir[j].r*cir[j].r) )
{
a[l].p = t;
a[l++].id = j;
}
}
}
sort(a, a+l, cmp_NODE);
l = unique(a, a+l, cmp_NODE_equal) - a;
memset(see, false, sizeof(see));
FOR(i, 0, l)
if( check(a[i], n) )
see[a[i].id] = true;
FOR(i, 0, n)
{
if( see[i] )
{
sum++;
continue;
}
if( !inst[i] && check_cover_all(cir[i], n) )
sum++;
}
return sum;
}
int main()
{
int n;
while( ~scanf("%d", &n) && n )
{
FOR(i, 0, n)
{
cir[i].get();
cir[i].id = i;
}
int ans = solve( n );
printf("%d\n", ans);
}
return 0;
}