【LOJ575】「LibreOJ NOI Round #2」不等关系(容斥)(CDQ分治)(NTT)

传送门


题解:

这个和PE上面一道叫permuted matrices的题差不多是一个套路。

实际上按照’>'分割,要求每一段是一个上升序列,同时每一段段头必须大于上一段段尾。对这样的排列进行一个计数。

并不好枚举那些限制满足,我们考虑枚举哪些限制不满足。

考虑计算一个前缀的答案,发现实际上我们可以枚举第一个不满足限制的位置进行容斥。

设答案为 f i f_i fi c t i = ∑ j = 1 i [ s j = = ′ > ′ ] ct_i=\sum_{j=1}^i[s_j=='>'] cti=j=1i[sj==>]

则容易得到转移式子:

f 0 = 1 , f i = ∑ j = 0 i − 1 [ s j = = ′ > ′ ] ( − 1 ) c t i − 1 − c t j ( i i − j ) f j f_0=1,f_i=\sum_{j=0}^{i-1}[s_j=='>'](-1)^{ct_{i-1}-ct_j}{i\choose i-j}f_j f0=1,fi=j=0i1[sj==>](1)cti1ctj(iji)fj

是个卷积,分治NTT即可,里面有一些系数有点诡异,无法牛顿迭代。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){a+=b-mod;return a+(a>>31&mod);}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){a+=b-mod;a+=a>>31&mod;}
inline void Dec(int &a,int b){a-=b;a+=a>>31&mod;}
inline void Mul(int &a,int b){a=mul(a,b);}

cs int bit=18,SIZE=1<<bit|1;

int r[SIZE],*w[bit+1];
int ifac[SIZE]; 
inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[1<<i-1];
	int wn=power(3,mod-1>>bit);w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
	ifac[0]=ifac[1]=1;
	for(int re i=2;i<SIZE;++i)ifac[i]=mul(mod-mod/i,ifac[mod%i]);
	for(int re i=2;i<SIZE;++i)Mul(ifac[i],ifac[i-1]);
}
inline void NTT(int *A,int len,int typ){
	for(int re i=1;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,d=1;i<len;i<<=1,++d)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int &t1=A[j+k],&t2=A[i+j+k],t=mul(w[d][k],t2);
		t2=dec(t1,t),Inc(t1,t);
	}
	if(typ==-1){
		std::reverse(A+1,A+len);
		for(int re i=0,inv=power(len,mod-2);i<len;++i)Mul(A[i],inv);
	}
}
inline void init_rev(int l){
	for(int re i=1;i<l;++i)r[i]=r[i>>1]>>1|((i&1)?l>>1:0);
}

cs int N=1e5+7;
char s[N];int n;
int f[N],a[N],b[N];//b[i] = (-1)^ct[i-1] a[i] = [s_i == >] * (-1)^ct[i]

inline void solve(int l,int r){
	if(l==r){return Mul(f[l],b[l]);}
	int mid=l+r>>1;solve(l,mid);
	static int A[SIZE],B[SIZE];
	int l1=mid-l+1,l2=r-l+1,len=1;
	for(int re i=l;i<=mid;++i)A[i-l]=mul(a[i],f[i]);
	for(int re i=l;i<=r;++i)B[i-l]=ifac[i-l];
	while(len<l1+l2)len<<=1;init_rev(len);
	memset(A+l1,0,sizeof(int)*(len-l1));
	memset(B+l2,0,sizeof(int)*(len-l2));
	NTT(A,len,1),NTT(B,len,1);
	for(int re i=0;i<len;++i)Mul(A[i],B[i]);
	NTT(A,len,-1);
	for(int re i=mid+1;i<=r;++i)Inc(f[i],A[i-l]);
	solve(mid+1,r);
}

signed main(){
#ifdef zxyoi
	freopen("neq.in","r",stdin);
#endif
	scanf("%s",s+1);n=strlen(s+1)+1;
	f[0]=a[0]=b[0]=1;init_NTT();
	for(int re i=1;i<=n;++i){
		b[i]=a[i-1];
		a[i]=s[i]=='>'?mod-a[i-1]:a[i-1];
	}
	for(int re i=1;i<n;++i)if(s[i]=='<')a[i]=0;
	solve(0,n);int ans=f[n];
	for(int re i=1;i<=n;++i)Mul(ans,i);
	cout<<ans<<"\n";
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值