【校内模拟】Slay(容斥原理)

题解:

f ( p , k ) f(p,k) f(p,k)表示从 [ 0 , n − 1 ] [0,n-1] [0,n1]中选择 k k k个数,使得和为 p p p的倍数的方案数。

接下来用一种很诡异的姿势容斥。

直接算并不好算,考虑枚举最后有 i i i个数固定且相同,前面选择 k − i k-i ki个不同的数和为 s u m sum sum,这两部分分开计算,互不影响。

发现会出现 i + 1 i+1 i+1个数重复的情况,需要减掉,然后又多减掉了 i + 2 i+2 i+2个数重复的情况,就这样容斥下去。

考虑算固定 i i i个数的情况。

显然我们需要下面方程有解:

p ∣ i x + s u m p\mid ix+sum pix+sum

g c d ( i , p ) ∣ s u m gcd(i,p)\mid sum gcd(i,p)sum,设 s u m = t ⋅ g c d ( i , p ) sum=t\cdot gcd(i,p) sum=tgcd(i,p),则:

p ∣ i x + t ⋅ g c d ( i , p ) p g c d ( i , p ) ∣ i g c d ( i , p ) x + t p\mid ix+t\cdot gcd(i,p)\\\frac{p}{gcd(i,p)}\mid \frac{i}{gcd(i,p)}x+t pix+tgcd(i,p)gcd(i,p)pgcd(i,p)ix+t

显然由于 p ∣ n p\mid n pn x x x [ 0 , n − 1 ] [0,n-1] [0,n1]中的合法取值有 n p g c d ( i , p ) = n p ⋅ g c d ( i , p ) \frac{n}{\frac{p}{gcd(i,p)}}=\frac{n}p\cdot gcd(i,p) gcd(i,p)pn=pngcd(i,p),且与 t t t无关,也就是说子问题为 f ( g c d ( i , p ) , k − i ) f(gcd(i,p),k-i) f(gcd(i,p),ki)

容斥完了之后,需要考虑一个东西,在算没有任何数重复的合法方案的时候,我们实际上还是固定了一个数,则每一个方案被算了 k k k次,需要除掉。

那么,很容易地,我们得到容斥递归求解的式子:

f ( p , k ) = 1 k ∑ i = 1 k ( − 1 ) i + 1 ⋅ n ⋅ g c d ( i , p ) p ⋅ f ( g c d ( i , p ) , k − i ) f(p,k)=\frac{1}{k}\sum_{i=1}^{k}(-1)^{i+1}\cdot \frac{n\cdot gcd(i,p)}{p}\cdot f(gcd(i,p),k-i) f(p,k)=k1i=1k(1)i+1pngcd(i,p)f(gcd(i,p),ki)

总复杂度是一个调和级数 O ( k log ⁡ k ) O(k\log k) O(klogk)?常数较大。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

inline int gcd(int a,int b){
	if(!a||!b)return a|b;
	int shift=__builtin_ctz(a|b);
	for(b>>=__builtin_ctz(b);a;a-=b)if((a>>=__builtin_ctz(a))<b)std::swap(a,b);
	return b<<shift;
}

cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){ll r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){(a+=b)>=mod&&(a-=mod);}
inline void Dec(int &a,int b){(a-=b)<0&&(a+=mod);}

cs int K=5e3+3;

int n,k;
int Cn[K],inv[K];

inline void init(){
	inv[0]=inv[1]=1;
	Cn[0]=1,Cn[1]=n;
	for(int re i=2;i<=k;++i){
		inv[i]=mul(inv[mod%i],mod-mod/i);
		Cn[i]=mul(Cn[i-1],mul(dec(n+1,i),inv[i]));
	}
}

int dp[K][K];

inline int f(int p,int k){
	if(!k)return 1;
	if(p==1)return Cn[k];
	if(~dp[p][k])return dp[p][k];
	int ans=0,tmp,val,d=n/p;
	for(int re i=1;i<=k;++i){
		tmp=gcd(p,i);
		val=mul(f(tmp,k-i),tmp);
		(i&1)?Inc(ans,val):Dec(ans,val);
	}
	return dp[p][k]=mul(ans,mul(d,inv[k]));
}

signed main(){
#ifdef zxyoi
	freopen("slay.in","r",stdin);
#endif
	std::cin>>n>>k;
	init();
	memset(dp,-1,sizeof dp);
	int ans=0,tmp,val;
	for(int re i=1;i<=k;++i){
		tmp=gcd(n,i);
		val=mul(f(tmp,k-i),tmp);
		(i&1)?Inc(ans,val):Dec(ans,val);
	}
	cout<<mul(ans,inv[k])<<"\n";
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值