C++语言实现最短路径算法(Shortest Path)

C++语言实现最短路径算法(Shortest Path)在C++中实现最短路径算法,可以使用Dijkstra算法。以下是一个使用Dijkstra算法来计算图中单源最短路径的示例:

#include <iostream>
#include <vector>
#include <queue>
#include <utility>
#include <limits>

using namespace std;

typedef pair<int, int> Edge;  // (weight, vertex)

class Graph {
    int vertices;
    vector<vector<Edge>> adjacencyList;

public:
    Graph(int v) : vertices(v), adjacencyList(v) {}

    void addEdge(int source, int target, int weight) {
        adjacencyList[source].emplace_back(weight, target);
        adjacencyList[target].emplace_back(weight, source);  // 如果是有向图,则去掉这一行
    }

    void dijkstra(int startVertex) {
        vector<int> distances(vertices, numeric_limits<int>::max());
        distances[startVertex] = 0;
        priority_queue<Edge, vector<Edge>, greater<Edge>> pq;
        pq.emplace(0, startVertex);

        while (!pq.empty()) {
            int currentDistance = pq.top().first;
            int currentVertex = pq.top().second;
            pq.pop();

            for (const auto& neighbor : adjacencyList[currentVertex]) {
                int weight = neighbor.first;
                int target = neighbor.second;
                int distance = currentDistance + weight;

                if (distance < distances[target]) {
                    distances[target] = distance;
                    pq.emplace(distance, target);
                }
            }
        }

        printShortestPaths(startVertex, distances);
    }

    void printShortestPaths(int startVertex, const vector<int>& distances) {
        cout << "Vertex\tDistance from Source " << startVertex << endl;
        for (int i = 0; i < vertices; ++i) {
            cout << i << "\t\t" << distances[i] << endl;
        }
    }
};

int main() {
    int vertices = 6;
    Graph graph(vertices);
    graph.addEdge(0, 1, 4);
    graph.addEdge(0, 2, 3);
    graph.addEdge(1, 2, 1);
    graph.addEdge(1, 3, 2);
    graph.addEdge(2, 3, 4);
    graph.addEdge(3, 4, 2);
    graph.addEdge(4, 5, 6);

    graph.dijkstra(0);

    return 0;
}

在这个示例中,我们创建了一个包含6个顶点的图,并添加了一些边。然后,我们从顶点0开始运行Dijkstra算法,计算并打印出从顶点0到所有其他顶点的最短路径距离。代码使用了C++标准库中的priority_queue来实现优先队列,以确保每次都选择距离最短的顶点进行处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亚丁号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值