大数据-SparkStreaming(三)

                            大数据-SparkStreaming(三)

Transformation 高级算子

  • updateStateByKey

需求:sparkStreaming接受socket数据实现所有批次的单词次数累加

package com.kaikeba.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * 实现把所有批次的单词出现的次数累加
  */
object UpdateStateBykeyWordCount {


  def main(args: Array[String]): Unit = {

    // todo: 1、创建SparkConf对象
    val sparkConf: SparkConf = new SparkConf()
                                              .setAppName("TcpWordCount")
                                              .setMaster("local[2]")

    // todo: 2、创建StreamingContext对象
    val ssc = new StreamingContext(sparkConf,Seconds(2))

      //需要设置checkpoint目录,用于保存之前批次的结果数据,该目录一般指向hdfs路径
       ssc.checkpoint("hdfs://node01:8020/ck")

    //todo: 3、接受socket数据
    val socketTextStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)

    //todo: 4、对数据进行处理
    val wordAndOneDstream: DStream[(String, Int)] = socketTextStream.flatMap(_.split(" ")).map((_,1))

     val result: DStream[(String, Int)] = wordAndOneDstream.updateStateByKey(updateFunc)

    //todo: 5、打印结果
    result.print()

    //todo: 6、开启流式计算
    ssc.start()
    ssc.awaitTermination()

  }

  //currentValue:当前批次中每一个单词出现的所有的1
  //historyValues:之前批次中每个单词出现的总次数,Option类型表示存在或者不存在。 Some表示存在有值,None表示没有
  def updateFunc(currentValue:Seq[Int], historyValues:Option[Int]):Option[Int] = {

       val newValue: Int = currentValue.sum + historyValues.getOrElse(0)
       Some(newValue)
  	}
    

}
  •  mapWithState

需求:sparkStreaming接受socket数据实现所有批次的单词次数累加

package com.kaikeba.streaming

import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, MapWithStateDStream, ReceiverInputDStream}
import org.apache.spark.streaming._

/**
  * mapWithState实现把所有批次的单词出现的次数累加
  * --性能更好
  */
object MapWithStateWordCount {

  def main(args: Array[String]): Unit = {
    Logger.getLogger("org").setLevel(Level.ERROR)

    // todo: 1、创建SparkConf对象
    val sparkConf: SparkConf = new SparkConf().setAppName("MapWithStateWordCount").setMaster("local[2]")

    // todo: 2、创建StreamingContext对象
    val ssc = new StreamingContext(sparkConf,Seconds(2))

      val initRDD: RDD[(String, Int)] = ssc.sparkContext.parallelize((List(("hadoop",10),("spark",20))))

    //需要设置checkpoint目录,用于保存之前批次的结果数据,该目录一般指向hdfs路径
       ssc.checkpoint("hdfs://node01:8020/ck")

    //todo: 3、接受socket数据
    val socketTextStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)

    //todo: 4、对数据进行处理
    val wordAndOneDstream: DStream[(String, Int)] = socketTextStream.flatMap(_.split(" ")).map((_,1))


     val stateSpec=StateSpec.function((time:Time,key:String,currentValue:Option[Int],historyState:State[Int])=>{

         //当前批次结果与历史批次的结果累加
        val sumValue: Int = currentValue.getOrElse(0)+ historyState.getOption().getOrElse(0)
        val output=(key,sumValue)


        if(!historyState.isTimingOut()){
          historyState.update(sumValue)
        }

       Some(output)
       //给一个初始的结果initRDD
       //timeout: 当一个key超过这个时间没有接收到数据的时候,这个key以及对应的状态会被移除掉
     }).initialState(initRDD).timeout(Durations.seconds(5))


     //使用mapWithState方法,实现累加
     val result: MapWithStateDStream[String, Int, Int, (String, Int)] = wordAndOneDstream.mapWithState(stateSpec)

    //todo: 5、打印所有批次的结果数据
    result.stateSnapshots().print()

    //todo: 6、开启流式计算
    ssc.start()
    ssc.awaitTermination()

  }


}
  • transform

需求:获取每一个批次中单词出现次数最多的前3位

package com.kaikeba.streaming

import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}

/**
  * 获取每一个批次中单词出现次数最多的前3位
  */
object TransformWordCount {

  def main(args: Array[String]): Unit = {

    Logger.getLogger("org").setLevel(Level.ERROR)

    // todo: 1、创建SparkConf对象
    val sparkConf: SparkConf = new SparkConf().setAppName("TransformWordCount").setMaster("local[2]")

    // todo: 2、创建StreamingContext对象
    val ssc = new StreamingContext(sparkConf,Seconds(2))

    //todo: 3、接受socket数据
    val socketTextStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)

    //todo: 4、对数据进行处理
    val result: DStream[(String, Int)] = socketTextStream.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)


    //todo: 5、将Dstream进行transform方法操作
    val sortedDstream: DStream[(String, Int)] = result.transform(rdd => {
      //对单词出现的次数进行排序
      val sortedRDD: RDD[(String, Int)] = rdd.sortBy(_._2, false)

      val top3: Array[(String, Int)] = sortedRDD.take(3)
      println("------------top3----------start")
      top3.foreach(println)
      println("------------top3------------end")
      sortedRDD
    })

    //todo: 6、打印该批次中所有单词按照次数降序的结果
    sortedDstream.print()



    //todo: 7、开启流式计算
    ssc.start()
    ssc.awaitTermination()

  }
}
  •  Window操作

需求:实现每隔4秒统计6秒的数据

package com.kaikeba.streaming

import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}

/**
  * todo:实现每隔4秒统计6秒的数据
  */
object ReduceByKeyAndWindowWordCount {

  def main(args: Array[String]): Unit = {
    Logger.getLogger("org").setLevel(Level.ERROR)

    // todo: 1、创建SparkConf对象
    val sparkConf: SparkConf = new SparkConf().setAppName("ReduceByKeyAndWindowWordCount").setMaster("local[2]")

    // todo: 2、创建StreamingContext对象
    val ssc = new StreamingContext(sparkConf,Seconds(2))

    //todo: 3、接受socket数据
    val socketTextStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)

    //todo: 4、对数据进行处理
    val result: DStream[(String, Int)] = socketTextStream.flatMap(_.split(" ")).map((_,1))


    //todo: 5、每隔4秒统计6秒的数据
    /**
      * 该方法需要三个参数:
      * reduceFunc: (V, V) => V,  ---> 就是一个函数
      * windowDuration: Duration, ---> 窗口的大小(时间单位),该窗口会包含N个批次的数据
      * slideDuration: Duration   ---> 滑动窗口的时间间隔,表示每隔多久计算一次
      */
    val windowDStream: DStream[(String, Int)] = result.reduceByKeyAndWindow((x:Int,y:Int)=>x+y,Seconds(6),Seconds(4))

    //todo: 6、打印该批次中所有单词按照次数降序的结果
    windowDStream.print()


    //todo: 7、开启流式计算
    ssc.start()
    ssc.awaitTermination()



  }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值