如何构造随机森林?【具体案例展示】

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

随机森林 = Bagging + 决策树

例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个树的结果是False, 那么最终投票结果就是True随机森林够造过程中的关键步骤(M表示特征数目):

1)一次随机选出一个样本,有放回的抽样,重复N次(有可能出现重复的样本)

 2) 随机去选出m个特征, m <

思考

1.为什么要随机抽样训练集?

如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

2.为什么要有放回地抽样?

如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

随机森林api介绍

  • sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)
    • n_estimators:integer,optional(default = 10)森林里的树木数量120,200,300,500,800,1200
    • Criterion:string,可选(default =“gini”)分割特征的测量方法
    • max_depth:integer或None,可选(默认=无)树的最大深度 5,8,15,25,30
    • max_features="auto”,每个决策树的最大特征数量
      • If "auto", then max_features=sqrt(n_features).
      • If "sqrt", then max_features=sqrt(n_features)(same as "auto").
      • If "log2", then max_features=log2(n_features).
      • If None, then max_features=n_features.
    • bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
    • min_samples_split:节点划分最少样本数
    • min_samples_leaf:叶子节点的最小样本数
  • 超参数:n_estimator, max_depth, min_samples_split,min_samples_leaf

随机森林预测案例

实例化随机森林

# 随机森林去进行预测
rf = RandomForestClassifier()

定义超参数的选择列表

param = {"n_estimators": [120,200,300,500,800,1200], "max_depth": [5, 8, 15, 25, 30]}

使用GridSearchCV进行网格搜索

# 超参数调优gc = GridSearchCV(rf, param_grid=param, cv=2)

gc.fit(x_train, y_train)

print("随机森林预测的准确率为:", gc.score(x_test, y_test))

注意:

随机森林的建立过程

树的深度、树的个数等需要进行超参数调优

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Python随机森林是一种集成学习算法,它通过构建多个决策树来进行预测。它将多个决策树的预测结果平均进行汇总,得到一种更具鲁棒性和准确性的预测模型。 Python随机森林算法需要进行超参调整,包括树的数量,最大深度,最小叶子节点数等。在构建随机森林之前,需要对数据进行预处理、特征选择和特征缩放等操作。 一个典型的Python随机森林实例可以是分类问题中的背景调查。假设我们有一份涉及到客户流失的数据集,我们希望根据客户的信息预测客户是否会流失。我们可以使用Python的Scikit-learn库构建一个随机森林分类器。首先,我们需要对数据进行预处理,包括缺失值处理、数据类型转换等。然后,我们需要进行特征选择和特征缩放。接着,我们可以使用交叉验证技术来调整模型的参数,选择最优的随机森林模型。最后,我们可以使用测试数据集来评估模型的表现,计算出准确率、精度和召回率等指标,以此来判断模型的预测能力。 总的来说,Python随机森林是一种强大的预测模型,可以应用于多种任务中,例如分类、回归等。在实际应用中,我们需要仔细处理数据、调整参数,并进行合理的评估。 ### 回答2: 随机森林是一种基于决策树的集成学习算法,具有较高的准确性和泛化能力。在Python中,可以通过scikit-learn库实现随机森林算法。 下面是一个简单的随机森林实例,用于预测股票市场的涨跌: ```python import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split # 读取股票市场数据 df = pd.read_csv('stock_market.csv') # 对数据进行特征工程和预处理 ... # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 建立随机森林模型并训练 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 对测试集进行预测 y_pred = rf.predict(X_test) # 计算准确率和其他评价指标 ... ``` 在这个实例中,我们首先读取了股票市场数据,并对数据进行了特征工程和预处理。然后,我们将数据划分为训练集和测试集,并使用随机森林模型进行训练和预测。最后,通过计算准确率和其他评价指标来评估模型的性能。 需要注意的是,在实际应用中,还应该对模型进行调参和优化,以提高其性能和泛化能力。 ### 回答3: Python随机森林是一种常用的机器学习算法,它是由多个决策树组成的集成模型。每个决策树都是通过在不同的样本和特征子集上进行训练得到的,因此随机森林可以有效地避免过拟合问题。 基于Python的随机森林实例通常包括以下几个步骤: 1. 收集数据:收集合适的数据作为训练集,这些数据应该包含足够的特征信息以及正确的标签。 2. 准备数据:对数据进行清洗和预处理,包括处理空值、调整数据类型等,以便于算法的处理。 3. 构建模型:使用scikit-learn库中的RandomForestClassifier模块构建随机森林模型,设置适当的参数(如决策树数量、特征子集大小等)。 4. 训练模型:使用训练集进行模型训练,随机森林模型会自动训练多个决策树,并对每个模型进行评估。 5. 评估模型:使用测试集对模型进行评估,通常使用准确率、精确率、召回率等指标来评估模型性能。 6. 使用模型:使用训练好的随机森林模型对新的数据进行预测,得出各类别的概率。 Python随机森林模型广泛应用于分类、回归、特征选择等任务,例如可以用于股票预测、医学诊断、自然语言处理等领域。在使用中,我们需要根据实际情况调整模型参数,以达到最好的模型性能和预测效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值