1、冒泡排序
最早接触到得排序算法,也是最熟悉的,效率可能也是最低的。它是稳定的,时间复杂度为O(n*n),空间复杂度为O(1)。
算法思想:
相邻数据比较,最大/小沉到最后。
核心代码:
for(int i=0;i<a.length;i++)
for(int j=1;j<a.length-i;j++)
if(a[j-1]>a[j])
swap(a[j-1],a[j]);
2、直接插入算法
插入排序也是稳定的,平均空间,时间复杂度都和冒泡一样。
算法思想:
将待排序的数据插入已排好的序列中。
核心代码:
for(int i=1;i<a.length;i++)
for(int j=i-1;j>=0&&a[j]>a[j+1];j--)
swap(a[j],a[j+1]);
3、希尔排序
这是一个不稳定的排序算法,平均时间复杂度为O(nlog2n),空间复杂度为O(1)
算法思想:
将数据分为若干组,然后进行插入排序。
核心代码:
//将直接插入排序的1换成gap
for(int gap=n/2;gap>0;gap/=2)
for(int i=gap;i<n;i++)
for(int j=i-gap;j>=0&&a[j]>a[j+gap];j-=gap)
swap(a[j],a[j+gap]);
4、直接选择排序
不稳定,O(n2),O(1)
算法思想:
从无序区选最小的数据放在有序区最后,感觉很像冒泡,把最小的数据冒到最上面,但是不同的是选择排序是用数组的下标来确定位置,不是一次次交换数据。
核心代码:
for(int i=0;i<n;i++){
int min = i;
for(j=i+1;j<n;j++)
if(a[j]<a[min])
min = j;
swap(a[i],a[min]);
}
5、归并排序
稳定,O(nlogn),O(n)
算法思想:
将有序数列合并。先递归,再合并。速度比冒泡、插入快很多。
//递归
void merge(int[] a,int first,int last,ing[] t){
if(first<last){
int mid = (first+last)/2;
merge(a,first,mid,t);
merge(a,mid+1,last,t);
merge_array(a,first,mid,last,t);
}
}
//将两个有序数列合并
void merge_array(int[] a,int first,int mid,int last,int[] temp){
int f = first,j = mid+1;
int m = mid,l = last,k = 0;
while(f<=m&&j<=l){
if(a[f]<=a[j])
temp[k++] = a[f++]
else
temp[k++] = a[j++]
}
while(f<=m)
temp[k++] = temp[k++];
while(j<=l)
temp[k++] = temp[j++];
for(f=0;f<k;f++)
a[first+f] = temp[f];
}
6、快速排序
不稳定,O(nlogn),O(logn)
算法思想:
取一个数,比它大的放右边,小的放左边。大佬说的挖坑填数+分治法。
void quick(int[] a,int left,int right){
if(left<right){
int l = left,r = right,temp = a[l];//将第一个数作为标兵
while(l<r){
while(l<r&&a[r]>=temp)
r--;
if(l<r)
a[l++] = a[r];
while(l<r&&a[l]<=temp)
l++;
if(l<r)
a[r--] = a[l];
}
a[l] = temp;
quick(a,l,l-1);
quick(a,l+1,r);
}
}
7、堆排序
我认为最难的排序,看了好久都没看懂,现在继续去看T_T