Description
Example
Solution 1(C++)
class Solution {
public:
int titleToNumber(string s) {
int sum=0, len=s.size()-1;
for(int i=0; i<= len; i++){
sum+= (s[i]-64)* pow(26, len-i);
}
return sum;
}
};
Solution 2(C++)
class Solution {
public:
int titleToNumber(string s) {
int number = 0;
for (int i = 0; s[i] != 0; i++) {
number = number*26 + s[i] - 'A' + 1;
}
return number;
}
};
算法分析
解法一: 解法一就是剥去这个题的应用场景的外观,直接把这个题当成一个进制运算问题。说白了,这个字符串转换成数字的过程就是一个26进制数转换成10进制。那么,按照一般进制运算的规律来处理就好了。所以,这个解法也可以抽象成一般的进制转换算法。
解法二: 解法二与解法一还是不一样。解法一是从整个数来进行分析,分析出各个位数上的数与进制转换之后的数的对应关系。而解法二从一个进制数的构成过程来分析。比如要得到”AB”这个数,那么刚开始有一个”A”,”A”要向前进一位,并以”B”补上。所以,自然得出解法二。
程序分析
首先要说一下解法一中用到的pow函数。该函数在头文件< math.h >中定义,所以可以参考:header
< cmath > (math.h)。所以,C++专栏系列博客下一篇就预备更新对cmath的学习。主要以掌握各种函数的运用为主。
然后要说一下ASCII码的问题。具体的ASCII码表如下所示:
当然要记住一张表太复杂,所以可以记住一些常用的字符:
0~9:48~57; A~Z:65~90; a~z:97~122
这道题是一道比较典型的进制换算题目,所以用到的有两种解法。一个是进制公式运算法,一个是进位叠加法。
for(int i=0; i<= len; i++){
sum+= (s[i]-64)* pow(26, len-i);
}
for (int i = 0; s[i] != 0; i++) {
number = number*26 + s[i] - 'A' + 1;
}
主要算法实现体现在循环体中,所以,就不全部展示。
此外,两种检测string是否遍历完也显示在上述两个for循环体中。注意一下。