数学建模——产生随机数的Matlab命令

在MATLAB软件中,可以直接产生满足各种分布的随机数,命令如下:


r a n d ( m , n ) rand\left( m,n \right) rand(m,n)

产生一个 [ 0 , 1 ] \left[ 0,1 \right] [0,1]均匀分布的随机数

在这里插入图片描述

产生 m × n m\times n m×n阶的 [ 0 , 1 ] \left[ 0,1 \right] [0,1]均匀分布的随机数矩阵
例如:产生一个 2 × 3 2\times 3 2×3阶的 [ 0 , 1 ] \left[ 0,1 \right] [0,1]均匀分布的随机数矩阵

在这里插入图片描述

产生 m × n m\times n m×n阶的 [ a , b ] \left[ a,b \right] [a,b]均匀分布的随机数矩阵
例如:产生一个 2 × 3 2\times 3 2×3阶的 [ 6 , 7 ] \left[ 6,7 \right] [6,7]均匀分布的随机数矩阵

在这里插入图片描述


u n i f r n d ( a , b , m , n ) unifrnd\left( a,b,m,n \right) unifrnd(a,b,m,n)

产生一个 [ a , b ] \left[ a,b \right] [a,b]上均匀分布 U ( a , b ) U\left( a,b \right) U(a,b)的随机数
例如:产生一个 [ 6 , 7 ] \left[ 6,7 \right] [6,7]均匀分布的随机数

在这里插入图片描述

产生 m × n m\times n m×n [ a , b ] \left[ a,b \right] [a,b]上均匀分布 U ( a , b ) U\left( a,b \right) U(a,b)的随机数矩阵
例如:产生一个 2 × 3 2\times 3 2×3阶的 [ 6 , 7 ] \left[ 6,7 \right] [6,7]均匀分布的随机数矩阵

在这里插入图片描述

注:与unifrnd(6,7,2,3)与6 + rand(2,3)*(7-6)等价


r a n d s r c ( μ , σ , m , n ) randsrc\left( \mu ,\sigma ,m,n \right) randsrc(μ,σ,m,n)

生成一个 m×n 矩阵,每个条目独立地从行向量字母表中的条目中选择。 字母表中的每个条目以相同的概率出现。 忽略字母表中的重复值

在这里插入图片描述

生成一个 m×n 矩阵,每个条目独立地从行向量字母表中的条目中选择。 字母表中的重复值将被忽略。 行向量 prob 列出了相应的概率,因此符号alphabet(k) 以概率prob(k) 出现,其中k 是1 和字母表列数之间的任意整数。 prob 的元素必须加起来为 1

在这里插入图片描述


n o r m r n d ( μ , σ , m , n ) normrnd\left( \mu ,\sigma ,m,n \right) normrnd(μ,σ,m,n)

产生一个均值为 μ \mu μ,标准差为 σ \sigma σ的正态分布的随机数
例如:产生一个均值为10,标准差为2的正态分布的随机数

在这里插入图片描述

产生 m × n m\times n m×n阶均值为 μ \mu μ,标准差为 σ \sigma σ的正态分布的随机数矩阵
例如:产生 2 × 3 2\times 3 2×3阶均值为10,标准差为2的正态分布的随机数矩阵

在这里插入图片描述


  当研究对象视为大量相互独立的随机变量之和,且其中每一种变量对总和的影响都很小时,可以认为该对象服从正态分布。
  机械加工得到的零件尺寸的偏差、射击命中点与目标的偏差、各种测量误差、人的身高、体重等,都可近似看成服从正态分布。


exprnd ( μ , m , n ) \text{exprnd}\left( \mu ,m,n \right) exprnd(μ,m,n)

产生一个期望值为10的指数分布的随机数

在这里插入图片描述

产生 m × n m\times n m×n阶期望值为 μ \mu μ的指数分布的随机数矩阵
例如:产生 2 × 3 2\times 3 2×3阶期望值为10的指数分布的随机数矩阵

在这里插入图片描述


  1. 若连续型随机变量 X X X的概率密度函数为 f ( x ) = { λ e − λ t    x ⩾ 0 0 x < 0 f\left( x \right) =\begin{cases} \lambda e^{-\lambda t}\,\,x\geqslant 0\\ 0 x<0\\ \end{cases} f(x)={λeλtx00x<0 其中 λ \lambda λ为常数,则称 X X X服从参数为 λ \lambda λ的指数分布。

  2. 指数分布的期望值为 1 λ \frac{1}{\lambda} λ1

  3. 排队服务系统中顾客到达率为常数时的达到间隔、故障率为常数时零件的寿命都服从指数分布。

  4. 指数分布在排队论、可靠性分析中有广泛应用。

  5. 注意: M a t l a b Matlab Matlab中,产生参数为 λ \lambda λ的指数分布的命令为 exprnd ( 1 λ ) \text{exprnd}\left( \frac{1}{\lambda} \right) exprnd(λ1)


poissrnd ( λ , m , n ) \text{poissrnd}\left(\lambda ,m,n \right) poissrnd(λ,m,n)

产生一个参数为 λ \lambda λ的泊松分布的随机数

在这里插入图片描述

产生 m × n m\times n m×n阶参数为 λ \lambda λ的泊松分布的随机数矩阵
例如:产生 2 × 3 2\times 3 2×3阶参数为10的泊松分布的随机数矩阵

在这里插入图片描述


  1. 设离散型随机变量 X X X的所有可能取值为 0 , 1 , 2 , ⋯   , 0,1,2,\cdots , 0,1,2,,且取各个值得概率为 P ( X = k ) = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯   , P\left( X=k \right) =\frac{\lambda ^ke^{-\lambda}}{k!}, k=0,1,2,\cdots , P(X=k)=k!λkeλ,k=0,1,2,,其中 λ > 0 \lambda >0 λ>0为常数,则称 X X X服从参数为 λ \lambda λ的泊松分布。
  2. 泊松分布的期望值为 λ \lambda λ
  3. 泊松分布在排队系统、产品检验、天文、物理等领域有广泛应用。

指数分布与泊松分布的关系

  如相继两个事件出现的间隔时间服从参数为 λ \lambda λ的指数分布,则在单位时间间隔内时间出现的次数服从参数为 λ \lambda λ的泊松分布。即单位时间内该事件出现 k k k次的概率为: P ( X = k ) = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯   , P\left( X=k \right) =\frac{\lambda ^ke^{-\lambda}}{k!}, k=0,1,2,\cdots , P(X=k)=k!λkeλ,k=0,1,2,,

详细https://blog.csdn.net/lyl771857509/article/details/79003585


  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值