位排序学习笔记
何为位排序
前几天在阅读编程珠玑时,偶然发现了这个奇妙的方法,它的大体思想如下,用一个n位长的位串,来表示一个拥有1到n的乱序的(不一定每个数都有)的集合,1表示存在于集合,0表示不存在,比如一个10位长的字符串 0 0 0 0 1 1 1 0 0 1 可以表示集合{1,4,5,6}(此处与原书上面的有点小出入)。
这个方法的主要思路分为三步:
第一步:声明一个位数组,并且把所有位设为0
第二步:读入要排序的数组,每读入一个数,将相应的位设为1
第三步:遍历得到的位数组,输出为1的位置所代表的数字,即是排序完的集合。
下面贴上一个简单的java实现版本:
位数组类:
public class Bit {
int[] bits;
int bitsize;
public Bit(int maxsize) {
this.bits = new int[(int) Math.ceil((double) maxsize / (double) 32)];
for (int i = 0; i < bits.length; i++) {
bits[i] = 0;
}
this.bitsize = maxsize;
}
// 得到对应的数由哪个位置的int表示
public int getPos(int num) {
return (int) Math.floor((double) num / (double) 32);
}
// 将相应位置设为1
public void setbit(int num) {
int position = this.getPos(num);
bits[position] = bits[position] | (1 << ((num & 31)-1));
}
// 判断相应位置是否为1
public boolean ifhas(int num) {
int position = this.getPos(num);
if (bits[position] == (bits[position] | (1 << ((num & 31)-1)))){
return true;
}
else
return false;
}
}
main函数类:
public class BitSort {
public static void main(String[] args) {
int[] m = { 10, 5, 3, 1, 2, 4, 9 };
Bit b = new Bit(10);
for (int i = 0; i < m.length; i++) {
b.setbit(m[i]);
}
for (int i = 1; i <=b.bitsize; i++) {
if (b.ifhas(i)) {
System.out.println(i);
}
}
}
}