ES索引重建–使用python elasticsearch
在ES集群的使用过程中,有时会遇到需要重新建立mapping的情况,通常,我们会选择建立一个新的索引,然后将数据从原索引迁移到新索引的方式来重建需要的mapping。
之前也有看到过通过Elasticsearch 的Java API 调用scan&scroll 和bulk 的方法,无奈Java 太久没有上手了~~
所以,找了一下,发现有Python的elasticsearch包针对这种Reindex作业提供了方法,相对Java 方法而言,Python 更为简单,仅需数行代码即可。
Python elasticsearch的详细文档链接:http://elasticsearch-py.readthedocs.io/en/latest/
一个简单的示例如下所示:
from elasticsearch import Elasticsearch
from elasticsearch import helpers
es_src=Elasticsearch(host_src) #原索引所在ES集群的host
es_des=Elasticsearch(host_des) #新索引所在ES集群的host
body={"query":{"match_all":{}}} #遍历原索引
helpers.reindex(client=es_src,source_index='wechat',target_index='wechat_new',target_client=es_des,query=body,chunk_size=1000) #重建索引
reindex( )方法的具体定义如下:
elasticsearch.helpers.reindex(client, source_index, target_index, query=None, target_client=None, chunk_size=500, scroll=u'5m', scan_kwargs={}, bulk_kwargs={})
-
参数含义
- client – 原索引所在ES
- source_index – 读取documents的索引
- target_index – 写入documents的索引
- query – search( ) api的主体
- target_client – 新索引所在ES
- chunk_size – es传输docs时每块含有的docs数量
- scroll – scroll的时间
- scan_kwargs – additional kwargs to be passed to scan()
- bulk_kwargs – additional kwargs to be passed to bulk()
从根本上来看,reindex( )方法是将scan&scorll 操作和bulk 操作组合到了一起,直接将scroll 得到的docs 通过bulk 导入到es 中,这两种操作的在Python elasticsearch.helpers中也有定义,你如果感兴趣的可以去阅读一下Python elasticsearch的文档。