近日,加拿大蒙特利尔大学的研究人员采用机器学习框架,通过分析癫痫患者颅内脑电数据中的局部场电位(LFP),发现运动计划和执行过程中方向调谐性振荡特征,揭示了神经振荡在编码运动计划中的作用,并提高了运动方向的解码准确度。
研究发现,主运动皮层神经元放电模式可推断手臂运动方向,其放电频率与运动方向关联,称为方向调谐。研究人员利用振荡相位、功率等特征解码手臂运动方向,这些特征在伽马波中体现方向调谐,对脑机接口和大脑运动神经表示理解有重要价值。
研究结果
单特征分类运动方向的结果
在运动区域和顶脑区,使用功率和相位特征显著解码了运动方向和意图。α和β节律功率在计划和执行中表现出高解码准确度,尤其在PMC和前广泛背外侧运动区。高伽马功率在执行过程中实现了较高的正确分类。超低频相位在执行中显示出解码能力,但PAC在运动分类中不显著。
图1 使用功率、相位和PAC特征在多频带对预期和执行的肢体运动进行4个方向的解码。
解码与意图和执行的肢体运动相关的网络
在运动计划或执行期间,多个脑结构在不同时间点通过α节律功率、伽马功率和β节律功率等特征预测运动方向,其中α节律功率首先在计划期间实现解码,随后伽马功率在前广泛背外侧运动区和后广泛背外侧运动区接力解码,PMC区域则利用伽马和β节律功率预测执行方向。
图2 感兴趣区域(ROI)和功率特征的重要时间密度排序
时间解析的调制和解码的结果
通过时间泛化(TG)分析测试了运动方向的表示是否在计划和执行阶段之间共享,并发现在pMFG和后广泛背外侧运动区的某些SEEG位点上,分类器可以在执行期间解码并将解码推广到计划期间,反之亦然。此外,在特定条件下,如在执行期间训练和在计划期间测试时,出现了明显的解码模式。
图3 时间分辨的4个方向调谐任务诱导的功率和相位调制。
运动方向解码的时间泛化
我们测试了运动方向表示在计划和执行间的共享性,通过TG分析发现,pMFG和前广泛背外侧运动区的SEEG位点在解码上存在差异,但后广泛背外侧运动区的部分信息在两者间共享。当结合多个功率特征时,解码模式得以保留,且解码准确度提升,特别是在计划期间训练并在执行期间测试时,出现了显著的解码模式。
图4 使用三个不同SEEG位点的功率特征进行时间泛化
多特征过程的解码结果
多特征框架探索了功率、相位和PAC在预测运动方向中的相关性,发现运动意图和执行阶段各有特征峰值,解码准确度在运动执行时普遍更高,且高频功率特征在执行中更重要。不同受试者解码性能有差异,特定频率在不同脑区用于解码运动方向和意图。
图5 多特征过程的解码结果
研究结论
本研究利用颅内记录的多频谱特征解码肢体运动方向的计划和执行,发现计划阶段依赖后部中央额叶和顶叶的低频功率,执行阶段依赖运动及前运动区的高γ波功率及极低频相位,揭示了人脑中多特征时间泛化方向调谐的可行性,并推动了脑活动频谱特性在运动规划和控制中作用的理解。
文献来源:
https://www.nature.com/articles/s42003-024-06151-3
—— End ——
仅用于学术分享,若侵权请留言,即时删侵!
点击投稿:脑机接口社区学术新闻投稿指南
加入社群
欢迎加入脑机接口社区交流群,
探讨脑机接口领域话题,实时跟踪脑机接口前沿。
加微信群:
添加微信:RoseBCI【备注:姓名+行业/专业】。
加QQ群:913607986
欢迎来稿
1.欢迎来稿。投稿咨询,请联系微信:RoseBCI
点击投稿:脑机接口社区学术新闻投稿指南
2.加入社区成为兼职创作者,请联系微信:RoseBCI
一键三连「分享」、「点赞」和「在看」
不错每一条脑机前沿进展 ~